
Uscope: A Scalable Unified Tracer
from Kernel to User Space

Junghwan Rhee, Hui Zhang, Nipun Arora, Guofei Jiang, Kenji Yoshihira
NEC Laboratories America

{rhee,huizhang,nipun,gfj,kenji}@nec-labs.com

Abstract—Unified tracing is the process of collecting trace logs
across the boundary of kernel and user spaces, and has been used
to understand the in-depth correspondence between low level
events and application program context for diagnosing system
failures and performance problems. Crossing the boundary from
the kernel space to a user space to collect trace events from dual
spaces imposes challenges compared to crossing the boundary
in the other way from a user space to the kernel space due to
multiple scheduled programs and diverse code layouts in the user
space regarding the tracing target. In this paper, we propose a
novel unified tracing system called Uscope to systematically trace
kernel and unprecedented user code with low overhead. The key
idea is to use an efficient variant of stack walking. Uscope lowers
stack walking overhead by adjusting the scope of walking in two
ways: (1) a highly configurable focus within the call stack, and
(2) a per-application tracing that systematically tracks a dynamic
set of new, exiting, or transforming processes and threads of an
application software. This system is realized by using a flexible
stack walking algorithm and a runtime kernel structure, Trace
Map. These key features lead to low run-time overhead under 6%
relative to native execution on a set of widely used benchmarks.

Keywords—black-box unified event tracing; performance diag-
nostics; system troubleshooting; data centers

I. INTRODUCTION

Modern software systems are complex, often composed of
many software layers such as application program binaries,
third-party libraries, middleware (e.g., JBoss), low level system
libraries (e.g., glibc), and kernels. All those layers are
potentially subject to dependability problems of software stack
such as failures, program bugs, or configuration errors, and can
cause functional or non-functional problems during execution.

In order to diagnose such a deep software stack, there
have been several tools such as DTrace [10], LTTng with
UST [4], SystemTap [16] with utrace [5] that monitor across
such boundaries and implement unified tracing of kernel and
user space events. This is not trivial since the two spaces are
isolated for reliability and security.

Figure 1 illustrates two different unified tracing mecha-
nisms. Figure 1(a) demonstrates precedented user code tracing
[10], [16]; Here, a set of predetermined code is provided as
a target for user level probes, and what is traced are the
invocations of these known probes and their kernel events. We
call this type of tracing mechanism Type 1 Unified Tracing.
However, predicting potential problematic code is not always
possible, and in such cases Type 1 Unified Tracing would
require tedious iterations to guess the problematic code that
the probes should target.

Fig. 1. Types of Kernel & User Space Unified Tracing.

Figure 1(b) presents another tracing mechanism for un-
precedented user code [10], that we call Type 2 Unified
Tracing. This approach can collect user space information
whenever a kernel probe (e.g., a system call) is triggered. This
is a highly desired feature for black-box diagnosis approaches
which rely only on kernel level visibility (as compared to
customized user-space solutions) to find the root-cause of the
problem.

Existing Type 2 unified tracers (e.g., ustack of DTrace
[10]) typically rely on a technique that scans the application
stack called stack walking to collect unprecedented user code
information. These solutions have been primarily used in
offline debugging environment due to the concern of stack
length and high overhead, and Uscope focuses on solving these
challenges in an efficient manner. We describe such challenges
in details:

Firstly, the code information in application stacks can be
massive and complex. For example, a study from the ECLIPSE
project [18] reported that the collected stack traces ranged
from a single frame to 1,024 frames, with a median length
of 25 frames. Clearly, blindly dumping the full stack imposes
overwhelming overhead.

Using a static depth for stack walking does not properly
mitigate this problem. Typically the top of the stack for system
calls are filled by the call sites from code layers in the order
of low level libraries, middleware, and the program. The stack
frames of interest (e.g., main binary) may not be reached with
a simple static depth due to a pile of call sites from other code
layers.

Secondly, existing kernel tracers [10] usually log the events
(e.g., system call tracing) of the entire system by default. This
design is understandable because the kernel serves all appli-
cation processes. However, a runtime environment commonly
has at least dozens of applications running for many reasons978-1-4799-0913-1/14/$31.00 c© 2014 IEEE

Process Transformation

Initial Worker Pool Workers on Demand

4663

apachectl

4663

httpd

execve

4664

httpd

fork

4665

httpd

fork

4666

httpd

fork

4667

httpd

fork

4668

httpd

fork

4669

httpd

fork

4671

httpd

fork

4672

httpd

fork

4673

httpd

fork

4661

apachectl

fork

4662

apachectl

fork

1

init

daemonized

Fig. 2. Runtime Dynamics of the Processes in Apache Web Server. (Note
that the graph is simplified by omitting additional worker threads having a
similar structure due to the constraint of space).

such as GUI, system logging, resource management, and server
programs. If we have a specific application program in mind
to trace and debug, system-wide tracing is clearly not the best
choice considering the runtime overhead and the log volumes.

Per-application kernel tracing has not been much studied
especially on how it can be done automatically and efficiently.
Tracing kernel events only for a program may not be a simple
task contrast to tracking a pre-forked process whose PID is
available because of the following reasons. First, determining
whether the currently scheduled process should be traced
could be costly without a careful design. In a naı̈ve design,
the process name could be used for this purpose. However,
performing strcmp to match the process name for each
kernel event is expensive. Second, the representation of an
application could be highly dynamic. It may have a dynamic
set of processes and threads forked, cloned, and exiting. Also
as very tricky but common cases, programs can turn into other
programs by replacing program binaries (e.g., execve).

As a concrete example, Figure 2 visualizes the processes of
Apache web server. The challenging case is shown in the box
labeled as “Process Transformation”. Apache is launched by a
utility, apachectl. It creates child processes and one of them
(PID 4663:apachectl) turns into a web server process (PID
4663:httpd) through a execve call. It is crucial to properly
handle this transformation of processes in order to trace a
program from its start. Also Apache manages a highly dynamic
pool of worker processes to handle requests. The head process
(PID 4664) of the server daemon dynamically increases the
number of workers when web requests are increasing. Note the
process hierarchy is not reliable to represent runtime program
status, because, for instance, the children of shells (e.g., bash,
cmd.exe, explorer.exe), and program schedulers (e.g.,
cron) can be arbitrary programs.

In this paper, we propose a novel unified tracing system
called Uscope, to support highly efficient unprecedented user
code tracing from kernel events.

Contributions. The contributions of this work are summa-
rized as follows:

• Flexible scope on call stack walking: Uscope offers
flexible configurations on what parts of the user stack
to be traced. It provides a simple interface for tun-
ing the tradeoff between run-time overhead and user
code coverage, and enables adaptive tracing through a
flexible stalk walking algorithm.

• Efficient per-application tracing: Current unprece-
dented unified tracing approach impose high overhead
due to a wide scope of the full stack walking on
multiple programs. We present an kernel structure
called Trace Map that keeps a pool of trace targets
to realize efficient per-application tracing.

The rest of the paper is organized as follows. Section II
presents the related work. Section III describes the design
of flexible stack walking. In Section IV, the implementation
and evaluation of Uscope prototype is described. Section V
presents discussions. Section VI concludes this paper.

II. RELATED WORK

Kernel Tracer. Kernel level event tracers [4], [7], [8],
[10], [11], [12], [15], [16], [17], [19], [21], [22] have been
widely used to analyze system behavior and debug perfor-
mance problems.

vPath [21] uses kernel events to construct request-
processing paths based on the causality of events. Considering
dynamic program control flow, solely relying on kernel events
may impose inaccuracy in the inference of paths. User level
context provided by Uscope can serve as new features to
correlate the events and potentially improve the accuracy of
the inference.

Magpie [8] collects kernel events and user tracepoints
which are injected to capture application/middleware specific
events. Dapper [19] is a similar approach developed by Google.
These approaches use tracepoints for common libraries and
RPC layers and it requires the knowledge on the system
regarding what code should be the tracepoints. Uscope’s
unprecedented user code tracing can reduce the efforts to
determine potential tracing points.

There is related work [7], [11], [12], [17] reconstructing
paths or understanding the workload using whitebox, greybox,
or blackbox approaches. Essentially there is a tradeoff between
the intrusiveness to the code and the accuracy of the inference.
Uscope works as a blackbox approach but has effects of
whitebox approaches, thus improving the accuracy of inference
while reducing the cost in deployment such as the source code
requirement.

Stack Walking and Debuggers. Stack walking is the
process inspecting a program call stack and reporting the
active stack frames (called a stack trace) at a certain time
point during the execution of a program (e.g., breakpoint,
fault). This technique is commonly used during interactive and

Fig. 3. Overview of Uscope.

post-mortem debugging. Most developers would be familiar
with the backtrace command in gdb [2]. kgdb and kdb
provide remote and local kernel debugging if the kernel is
built to support it [6]. Debugging tools in other development
environments such as Eclipse, Visual Studio, also provide
similar functionalities.

The functionality provided by these tools is extremely
useful when trying to understand code flow. However, it is
impractical for debugging large-scale softwares. This is mostly
because they impose a heavy overhead which becomes a big
drawback as code complexity increases. Uscope addresses this
problem by finding the corresponding user-space functions for
interested events in the system call trace. This comes with a
low overhead stack walk which is more practical.

Unified Tracing. Several tools such as DTrace PID
provider [10], LTTng with UST [4], SystemTap [16] with
utrace [5] provide unified tracing that support the collection of
kernel events and user events. However, the major difference
of such tools compared to Uscope is that they track the user
probes which are predetermined user level program functions
(i.e. only functions that have been instrumented will be traced).

DTrace ustack [10] is the closest work providing Type 2
unified tracing with the global scope as well as Type 1 unified
tracing. In a deep stack layer, application code is mostly hidden
below library code. DTrace’s static stack walking depth can
limit the tracing impact, but it may not effectively reach user
code stack frames of interest. In contrast, Uscope can achieve
efficient yet effective tracing of unprecedented user code by
flexibly skipping unrelevant code ranges (i.e., low level system
libraries) and unrelevant processes/threads in stack walking.

III. DESIGN OF USCOPE

In this section, we present the design of the Uscope tracing
system (shown in Figure 3). Uscope requires three user inputs:
Kernel Tracing Target, User Tracing Target, and Tracing Mode.
The Kernel Tracing Target is the set of kernel events (e.g.
system calls) the user wants to inspect. The User Tracing
Target is the application that the user wishes to focus on (e.g.,
httpd). The Tracing Mode specifies the scheme regarding the
granularity of stack walking.

The core novelty introduced by Uscope is a variation of
stack walking mechanism designed for efficient collection of
unified traces. Uscope is composed of the following two com-
ponents: Flexible Stack Walking and Per-Application Tracing.

A. Flexible Stack Walking

A single program may consist of multiple code ranges
due to causal software components such as libraries or plug-
ins. The monitoring granularity on this group of information
can be customized to provide flexibility and further optimize
the monitoring performance. For instance, developers may
be interested in what user code is triggering kernel events.
However, the top of the user stack could be filled by multiple
layers of low level library code such as glibc. Uscope
provides a configurable Tracing Mode, and perform efficient
stack walking by defining the scope with in the call stack so
that the walking can be completed as soon as the requested
information is collected.

Figure 4 presents four example cases of Tracing Modes.
More exploration in other configuration or dynamic configura-
tion could be interesting for further study. In these examples,
we use a notation Rj for a code range of a binary or a library
and Cj,q for a call site that belongs to Rj . q is the index of
call sites within the code range (1 ∼ nj). There is a budget for
the maximum number of call sites (S) for each stack walking.

(1) Mode 1 (Application Mode). This mode focuses
on efficiency of the monitoring overhead and the size of
log information. It captures the last function call site that
invokes a system call in the main binary (C1,n1). Thus it
guides developers to go back to the last place in their code
on kernel events. Note that there are K − 1 libraries between
the kernel and the user binary (R1). Thus traditional stack
walking approaches with limited walking distance may not be
able to reach the application code. Flexible walking allows to
skip intermediate libraries and jump into the binary of interest.

(2) Mode 2 (Application All Mode). This mode is an
extension of Mode 1. Uscope attempts to capture all call sites
within the main binary (C1,1, · · · , C1,n1) as far as slots for
recording are available. The maximum number of call sites
for this mode is max(n1, S).

(3) Mode 3 (Library Mode). In this mode, Uscope
captures the last call sites of each code range from the lowest
layer to the highest layer up to S call sites. It is useful to
validate what kinds of code component or libraries are involved
with a system call since a call site from each code range is
sampled. The maximum number of call sites is max(k, S)
where k is the total number of code ranges.

(4) Mode 4 (All Mode). This mode provides the most
amount of details of user code information which is the full
call stack information.

When a kernel event to be recorded is triggered, Uscope
identifies the user stack and walks it to collect a list of user
code call sites leading to the current kernel event. During this
process, Uscope offers tradeoffs to speed up the tracing by
flexibly control the walking granularity. We call this mecha-
nism Flexible Stack Walking. Algorithm 1 shows how it works
in details.

Tracing Mode represents the flexible walking granularity,
which can adjust the monitoring overhead. If we focus on some
code assuming other parts or complex libraries are separately
inspected, we can improve monitoring performance efficiency
by only focusing on such code. This is controlled by listing

Fig. 4. Examples of Tracing Modes and User Code Information (Call Sites) Collected by Uscope.

Algorithm 1 Flexible Stack Walking
A : Availability map of code ranges
S : Maximum number of call sites to be recorded
PTR : data structure reference from Trace Map
PTR.CR : Code ranges, PTR.CC : Cache of CR
B : Output buffer array (size is S).

1: function FLEXIBLEWALK(UserStack, PTR,B)
2: i = 0; j = | Stack end - Current stack pointer |
3: Initialize A[|PTR.CR|] with the configuration
4: while i < S and j > 0 do
5: c = Walk(UserStack); j = j − 1
6: if CollectCallSite(c, A, PTR) > 0 then
7: B[i] = c; i = i+ 1

8: function COLLECTCALLSITE(c, A, PTR)
9: (v, idx) = CheckCRLT (c, PTR)

10: if v > 0 then
11: if A[idx] == 0 then
12: return 0
13: else
14: A[idx] = A[idx]− 1
15: return 1
16: else
17: return 0
18: function CHECKCRLT(c, PTR)
19: if c belongs to a code range idx in PTR.CC then
20: return (1, idx)
21: else
22: if c belongs to a code range in PTR.CR then
23: Add the code range idx to PTR.CC
24: return (1, idx)
25: else
26: return (0, 0)

only such code in the scope of code ranges. This information
is organized in our data structure called Code Range Lookup
Table (CRLT) (shown as CR and CC in Algorithm 1). CR is
a refined set of code ranges that is only inspected by Uscope,
and CC is a cache of CR to speed up lookups.

The main function for stack walking is FlexibleWalk.

The entire output will be recorded in the buffer B (size S). This
buffer is used by multiple code ranges of the program. Tracing
mode will configure how many call sites will be allowed for
each code range. As the algorithm walks the stack, it fills the
output buffer. During the process, the availability map of code
ranges (A) tracks how many call sites are remaining to be
recorded in each code range. It is initialized in line 3 by the
configuration of Tracing Mode.

As Uscope walks the user stack (line 5), the scanned value
is checked for (1) whether it belongs to a code range under
tracking and (2) whether it can be recorded in the buffer
regarding the configuration. The first check is performed by the
CheckCRLT function. It checks whether the call site belongs
to the cache (CC) in the CRLT. If not, the list is used for the
lookup and the found entry is put into the cache. The second
check is done by consulting the availability map (A).

In extreme cases such as deep recursion, the excessive size
of collected call sites could potentially incur high overhead.
To avoid such undesired effects, we also use a global budget
of traced information S.

B. Per-Application Tracing

In Type 2 unified tracing, when a kernel target is executed,
a monitor inspects the corresponding code in the user space.
Given that OS kernel is a low level service, the kernel event
could be triggered by any process running in the OS. If the
application is not the target application of interest, walking
user stack will incur needless run-time and storage overhead.
Since stack walking is very costly, it is critical to avoid such
case to keep the monitoring overhead minimal.

Uscope dynamically activates the kernel tracer itself de-
pending on the processes in the user space, with the focus
on the specified application. Selectively activating tracing on
a certain group of processes requires the capability to test
whether the current process belongs to the target process group,
which is identified by the process name. One naı̈ve method is
to compare the name of current process and the name of the
user tracing target. The overhead for a string match could be

Fig. 5. Operation Steps of Trace Map.

expensive if programs trigger the traced kernel functions very
frequently.

Trace Map. This problem is solved in Uscope by man-
aging a pool of traced processes that we call Trace Map and
avoiding expensive name matchings. It provides an efficient
checking of current user program context in the constant
time with a dynamic array indexed by PIDs. This structure
is managed in non-critical execution paths thus achieving low
amortized overhead.

As shown in Figure 5, efficient checking of Uscope tracing
target takes the following steps:

• Step 1© : The arrival of a kernel event in the kernel
tracing target

• Step 2© : The process ID (PID) of the current user
program is derived from kernel data structures.

• Step 3© : We use a dynamic array indexed by the PID
number to achieve the constant time in the checking.

• Step 4© : When there is a new process, it is not known
yet whether it is a process of the user tracing target
or not. Thus at the first kernel event of a new process,
its process name is compared with the user tracing
target’s name. The PTR field for this process of the
Trace Map is initially Null indicating its identity
is not discovered yet. After this comparison, it is
marked either as a PTR which points to a CRLT
structure or OUT (a special value) indicating no tracing
is necessary depending on whether the process belongs
to user tracing target or not. From the second event
of this PID, the PTR field of the map is retrieved and
the traceability is determined quickly in the constant
time.

• Step 5© : Another important issue is maintaining the
Trace Map to ensure accuracy. This problem is solved
by capturing all kernel events (e.g., fork, exit,
and execve) that can make a change in the status
of processes and configuring the map accordingly
before the checking occurs. This function is shown
as dynamic process management layer in Figure 5.

• Step 6© : If the kernel event belongs to the user tracing
target, the necessary information for stack walking is
retrieved from the Trace Map using the PTR field.

Fig. 6. Performance Comparison of Native Execution (Native), SystemTap
(Stap), and Uscope (Uscope 1-1, 2-3, 2-5, 3-5).

• Step 7© : The user stack walking is performed on this
kernel event.

• Step 8© : If it is not a target, which is determined by
the value, OUT, in the map, it returns without stack
walking.

In addition to fast determination of the tracing target,
another important role of Trace Map is to reorganize the
information necessary for stack walking to perform walking
efficiently. When a new process is determined, the code ranges
of this process is copied from a kernel data structure (e.g.,
vm_area_struct in Linux) to CRLT and it is linked to
the entry of this process in the Trace Map. This map covers
the main binary and dynamically linked libraries. Statically
linked libraries are combined into the main binary during the
compilation stage. Thus Uscope does not need extra handling.
Instead they are treated as functions in the binary.

IV. EVALUATION

Uscope is implemented by enhancing a production kernel
tracer, SystemTap [16], that allows a kernel agent to hook
kernel events without modifying kernel source code. Uscope
places an interposition layer in SystemTap to additionally
perform a light weight stack walking on selected processes
under tracing. Since SystemTap can dynamically add or re-
move hooks in the kernel, Uscope can be simply detached
from the kernel at runtime when disabling the tracing, and
cause zero overhead. Currently we support stack walking for
system calls because they are invoked by user programs and
thus have corresponding user level context.

A. Performance Overhead

We evaluated Uscope by comparing its performance to its
base system, SystemTap, and the native execution. We chose
three well known benchmark suites, the Apache benchmark,
the MySQL benchmark, and NBench. These benchmarks test
not only realistic server workload but also CPU and memory
systems intensively.

Figure 6 shows the normalized performance of SystemTap
and Uscope compared to native execution. In three bench-
marks, performance numbers are scaled, such that native
performance is normalized to 1 (shown as “Native”). Hence,
higher values mean better performance in all cases. The tested
machine has an Intel Core 7 CPU processor with 8GB of
RAM, and its OS is Redhat Enterprise Linux Server 5 64 bits
(x86 64).

“Stap” represents the application performance with only
system call tracing by SystemTap. We have measured Us-
cope’s performance with several configurations; “Uscope 1-1”,
“Uscope 2-3”, “Uscope 2-5”, and “Uscope 3-5” respectively
represent performance traced by Uscope configured with Mode
1 (S=1), Mode 2 (S=3), Mode 2 (S=5), and Mode 3 (S=5).

Apache. We tested a commonly used web server, Apache
httpd (version 2.2.10) with Apache HTTP server benchmark-
ing tool (ab), which is configured with 100 concurrency and
one million (1 × 106) requests to challenge the web server.
We used the “Transfer rate (Kbytes/sec)” from the report of
ab. The impact of the overhead of Uscope is reasonable in
this test given the volume of workload demand. Its workload
incurred under 0.8% overhead for Mode 1 and 2 (S=3 and 5),
and 5.6% overhead for Mode 3 with S=5 in the throughput
(Transfer rate) of the benchmark.

MySQL. MySQL is a widely used open source
database. We tested this software (version 5.6.10) with
the MySQL Benchmark suite which consists of 9 tests:
alter-table, ATIS, big-tables, connect, create,
insert, select, transactions, and wisconsin. We
used the total time taken to finish the benchmark suite. Uscope
is light weight for this intensive workload. It incurred less than
3.3% overhead in the Mode 1, 2 (S=3 and 5), and 3 (S=5) in
this benchmark.

NBench. This benchmark is a port to Linux/Unix of
BYTE’s Native Mode Benchmarks (verison 2.2.3). We used
“Memory Index”, “Integer Index”, and “FP Index” from the
results of this benchmark. NBench is mostly composed of
memory, integer, and floating point intensive operations. Us-
cope rarely affects computational workload like NBench. The
highest overhead is 1.3%.

B. Case Study: Root-Cause Localization via System Call/User
Code Co-Analysis

Uscope can provide an excellent aid in assisting kernel
level debuggers to localize the problem in user-space. There
have been several approaches [9], [14], [20] using user context
to localize bugs. Uscope can be utilized as a building block of
such approaches; thus providing user context transparently by
avoiding source code modification or predetermined probes to
instrument programs. As one concrete example of such usages,

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

re
a
d

o
p
e
n

c
lo

s
e

s
ta

t
ls

ta
t

p
o

ll
ls

e
e

k
m

m
a

p
m

p
ro

te
c
t

b
rk

p
re

a
d
6
4

a
c
c
e

s
s

s
e

le
c
t

a
c
c
e
p

t
s
e
n
d
to

re
c
v
fr

o
m

g
e
tp

e
e
rn

a
m

e
s
e

ts
o

c
k
o

p
t

c
lo

n
e

fc
n

tl
g
e
tc

w
d

re
a

d
lin

k
fu

te
x

c
lo

c
k
_

g
e

tt
im

eM
y
s
q

l
C

o
d
e

 O
ff

s
e
t

w
it
h
in

 t
h

e
 B

in
a
ry

System Call (Used Ones in the Monitored Period)

Normal Execution
Abnormal Execution

Fig. 7. Comparison of User Code (Y-axis) and System Call (X-axis)
Mapping in Normal and Abnormal Execution for Troubleshooting a MySQL
Performance Problem.

here we demonstrate one usage scenario on localizing the root-
cause of a performance problem enabled by the combination
of kernel and user code information of Uscope. The purpose
of this section is illustrating the new feature of Uscope that
can introspect the application inside and provide clues on the
root-cause of a performance problem.

This problem happens in a multi-tier service testbed, Pet-
store [3], which consists of three tiers: Apache 2.2.3, JBoss
3.2, and MySQL 5.6.10. The symptom of the problem is that
the web requests are not successfully handled and the pages
with missing or garbled information are returned to clients.
We first localized MySQL node is the suspect by replacing
each tier with a backup node. Still we do not have any clue
what caused this problem and need to understand more precise
application level root-cause to fix this problem and recover this
node. Before and after this anomaly happens, we generated
Uscope traces using Mode 2 (S = 3) for a period of test
requests which are generated by accessing the links for the
menus in the main Petstore page to list the details of animals.

Note that MySQL is a large scale application that heavily
relies on threads. With the basic configuration, over 20 threads
were running and among those at least 8 or 9 threads generated
system calls during the monitored period. For existing tools
that require to specify pid numbers, it will be a hassle to list
all processes/threads. And it is not obvious to select some pids
because it is hard to know which threads are main workers just
based on numbers. Moreover when a new thread or process is
forked or exits, it will be tricky to add and remove the process
automatically on time without missing its system calls. Uscope
handles such complex issues smoothly with the automated
process target tracking technique.

Figure 7 illustrates the summary of MySQL’s execution. X
axis shows the list of system calls triggered by mysqld during
the workload. In addition, the application code triggering such
system calls is represented as an offset within the code binary

in the Y axis. This offset is mapped to a specific code line of
the program. Multiple code sites per a system call are marked
in the Figure without hierarchical priority for simplicity. ©
and × marks respectively represent MySQL’s code triggering
system calls before and after the performance problem.

First of all, the comparison of two sets of system calls
clearly indicates anomaly due to distinct distribution of system
calls for similar user requests. More important step next is
to understand what specific problem caused this performance
anomaly. Uscope brings a new observation by stitching kernel
information and unprecedented user code information together
as shown in Figure 7.

In general the abnormal execution has limited diversity
of system calls lacking several types of system calls that
exist in normal execution. A noticeable difference is that
some system calls such as read and accept syscalls
only exist in normal execution while stat syscalls exist
only in the abnormal execution. Regarding the call stack
information from Uscope, read syscalls are triggered by
the user code, my_read, and accept are triggered by
handle_connections_sockets. These functions are
commonly triggered when MySQL serves database entries
replying to the requests from the second tier. Lacking such
events confirms that in the abnormal workload MySQL fails to
handle requests. stat system calls are triggered by my_stat
which was called by archive_discover. This call se-
quence indicates the abnormal workload has a problem in
finding the database file.

This performance anomaly was introduced by misleading
operations in the database tier while the MySQL server op-
erates at runtime. Specifically MySQL’s internal data files are
damaged causing the database tables to be tampered with. As
the consequence, MySQL could not serve the queries from
the second tier (i.e., JBoss) properly causing incomplete web
pages to the users.

This co-analysis based on system calls and user code call
stack information reveals rich information on user program
internals illustrating what functions execute or fail therefore
explaining the root-cause of this performance problem. Uscope
enables deep understanding on application details without
expensive debugging techniques such as gdb or ptrace
which do not scale well in realistic workload.

C. Case Study: Transparent Deadlock Root-Cause Inspector

In this section, we present another usage case to use Uscope
for understanding a concurrency bug. Concurrency bugs are
often hard to be reproduced as they are triggered due to non-
determinism in parallel execution of processes/threads. This
debugging process is much easier with Uscope as it provides
a light weight stack trace of the program on the spot.

We applied Uscope to a real case of Apache web server
(Case number: Apache #42031 [1], also studied in [13], [23]).
In this case, there are two pthread mutex variables involved:
timeout and idlers. This bug is triggered when a worker
thread is blocked on the timeout mutex before it signals
the listener thread. (Apache threads are implemented using
pthreads, which internally use futex system calls which
are in turn used by Uscope to capture the call stack).

Fig. 8. Revealing User Context of a Blackbox Program under Deadlock
(Apache Bug #42031). Uscope is applied on futex system calls. The
presented code is simplified to assist the understanding.

We used Mode 2 (S = 5) to collect up to the last
five call sites within the main httpd binary at the time
when the futex system calls were invoked. Uscope provides
what user code was executed at pthread locks and unlocks
when the deadlock occurs: apr_thread_mutex_call
(a wrapper of pthread_mutex_call) call in a worker
thread and apr_thread_cond_wait (a wrapper of
pthread_cond_wait) call in a listener thread. The user
code during the deadlock pinpoints the exact combination
of the conditions that cause the deadlock, which is the very
detailed information to help the understanding of the bug.

Compared to user level tools such as gdb or core dumps
based on ptrace, Uscope does not suffer performance pertur-
bation caused by a user level tracing mechanism. In particular
this case could be analyzed by such tools because it remains
in a steady state (i.e., deadlock). Otherwise it is hard to know
when to apply those tools. Uscope, however, can investigate
bug scenarios without any such assumption on the application
status regardless whether a program enters a steady state or
not.

V. DISCUSSION

System-Call-Driven. Uscope is motivated by the applica-
tion of stack walking mechanisms in conjunction with kernel
event traces to debug large scale applications. Due to its im-
plementation that Uscope is system-call-driven (i.e. functions
in the stack leading to a system call can be tracked), function
calls not resulting in system calls are not included in the current
evaluation. However, this coverage can be easily extended by
triggering stack walking in an extended set of kernel functions.
For instance, context switch events are effective candidates
to sample user space call stacks even when the program has
mostly user space workload.

Native vs. Non-native Programs. Uscope works for native
programs written in C/C++ languages. Non-native programs
such as Java applications have different mechanisms for the
call stacks. Our current implementation of Uscope does not
go into the stacks other than native programs. This is not

a technical challenge of Uscope, but simply an aspect of
implementation. For instance, the viability of stack unwinding
in Java can be observed in Java debugger (e.g., jdb) and
Java stack inspection tools (e.g., jstack), and a similar stack
unwinding implementation can be added to Uscope.

VI. CONCLUSION

In this paper, we presented the design and implementation
of a novel kernel tracer, Uscope, that provides efficient unified
tracing of kernel and unprecedented user code. Our prototype
demonstrates that unified tracing can be implemented with the
overhead as low as under 6% compared to native execution in
a widely used set of benchmarks. We also presented the usage
scenarios of Uscope illustrating how unified traces can benefit
performance diagnosis and root-cause analysis of bugs.

REFERENCES

[1] Apache Bug #42031 42031 - EventMPM child process freeze. https:
//issues.apache.org/bugzilla/show bug.cgi?id=42031.

[2] gdb: The GNU Project Debugger. http://sources.redhat.com/gdb/.
[3] The Java PetStore 2.0. http://www.oracle.com/technetwork/java/index-

136650.html.
[4] LTTng: Linux Tracing Toolkit - next generation. http://lttng.org.
[5] SystemTap User-Space Probing. http://sourceware.org/systemtap/

SystemTap Beginners Guide/userspace-probing.html.
[6] Using kgdb, kdb and kernel debugging internals. http://kernel.org/doc/

htmldocs/kdb.html.
[7] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-

tacharoen. Performance debugging for distributed systems of black
boxes. In Proceedings of the nineteenth ACM symposium on Operating
systems principles (SOSP ’03), 2003.

[8] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie
for request extraction and workload modelling. In Proceedings of
the 6th conference on Symposium on Opearting Systems Design &
Implementation (OSDI’04), 2004.

[9] M. D. Bond, G. Z. Baker, and S. Z. Guyer. Breadcrumbs: efficient
context sensitivity for dynamic bug detection analyses. In Proceedings
of the 2010 ACM SIGPLAN conference on Programming language
design and implementation (PLDI ’10), 2010.

[10] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic
instrumentation of production systems. In Proceedings of the annual
conference on USENIX Annual Technical Conference 2004 (USENIX
’04), 2004.

[11] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint:
Problem determination in large, dynamic internet services. In Proceed-
ings of the 2002 International Conference on Dependable Systems and
Networks (DSN ’02), 2002.

[12] U. Erlingsson, M. Peinado, S. Peter, and M. Budiu. Fay: extensible
distributed tracing from kernels to clusters. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles (SOSP
’11), 2011.

[13] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th international conference on Architectural
support for programming languages and operating systems (ASPLOS
XIII), 2008.

[14] B. Lucia and L. Ceze. Finding concurrency bugs with context-aware
communication graphs. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 42), 2009.

[15] R. J. Moore. A universal dynamic trace for linux and other operating
systems. In Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, 2001.

[16] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston, and B. Chen.
Locating system problems using dynamic instrumentation. In Proceed-
ings of the 2005 Ottawa Linux Symposium (OLS), 2005.

[17] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and
A. Vahdat. Pip: detecting the unexpected in distributed systems. In
Proceedings of the 3rd conference on Networked Systems Design &
Implementation (NSDI ’06), 2006.

[18] A. Schroter, N. Bettenburg, and R. Premraj. Do stack traces help
developers fix bugs? In Mining Software Repositories (MSR), 2010
7th IEEE Working Conference on, pages 118 –121, may 2010.

[19] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report, Google, Inc., 2010.

[20] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang. Precise calling
context encoding. IEEE Transaction of Software Engineering, pages
1160–1177, 2012.

[21] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and R. N.
Chang. vpath: precise discovery of request processing paths from black-
box observations of thread and network activities. In Proceedings of
the 2009 conference on USENIX Annual technical conference (USENIX
’09), 2009.

[22] A. Tamches and B. P. Miller. Fine-grained dynamic instrumentation
of commodity operating system kernels. In Proceedings of the third
symposium on Operating systems design and implementation (OSDI
’99), 1999.

[23] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. Mahlke. The
theory of deadlock avoidance via discrete control. In Proceedings of
the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL ’09), 2009.

