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ABSTRACT

Sandboxed, Online Debugging of Production Bugs for SOA
Systems

Nipun Arora

Software debugging is the process of localizing, and finding root-cause of defects that were observed

in a system. In particular, production systems bugs can be the result of complex interactions between

multiple system components and can cause faults either in the kernel, middleware or the application

itself. Hence it is important, to be able to gain insight into the entire workflow of the system, both

breadth-wise (across application tiers and network boundaries), and depth wise (across the execution

stack from application to kernel).

In addition to the inherent complexity in debugging, it is also essential to have a short time

to bug diagnosis to reduce the financial impact of any error. Recent trends towards DevOps, and

agile software engineering paradigms further emphasize the need of having shorter debug cycles.

DevOps stresses on close coupling between software developers and operators, and to merge the

operations of both. Similarly, agile programming has shorter development cycles called sprints,

which focus on faster releases, and quick debugging. This trend is also reflected in the frequency of

releases in modern SOA services, for instance Facebook mobile has 2 releases a day, and Flickr has

10 deployment cycles per day.

Existing debugging mechanisms provide light-weight instrumentation which can track execution

flow in the application by instrumenting important points in the application code. These are followed

by inference based mechanisms to find the root-cause of the problem. While such techniques are

useful in getting a clue about the bug, they are limited in their ability to discover the root-cause (can

point out the module or component which is faulty, but cannot determine the root-cause at code,

function level granularity). Another body of work uses record-and-replay infrastructures, which

record the execution and then replay the execution offline. These tools generate a high fidelity

representative execution for offline bug diagnosis, at the cost of a relatively heavy overhead, which is



generally not acceptable in user-facing production systems.

Therefore, to meet the demands of a low-latency distributed computing environment of modern

service oriented systems, it is important to have debugging tools which have minimal to negligible

impact on the application and can provide a fast update to the operator to allow for shorter time to

debug. To this end, we introduce a new debugging paradigm called live debugging. There are two

goals that any live debugging infrastructure must meet: Firstly, it must offer real-time insight for bug

diagnosis and localization, which is paramount when errors happen in user-facing service-oriented

applications. Having a shorter debug cycles and quicker patches is essential to ensure application

quality and reliability. Secondly, live debugging should not impact user-facing performance for non

bug triggering events. Most bugs which impact only a small percentage of users. In such scenarios,

debugging the application should not impact the entire system and other users who are not triggering

the bug.

With the above-stated goals in mind, we have designed a framework called Parikshan1, which

leverages user-space containers (OpenVZ/ LXC) to launch application instances for the express

purpose of debugging. Parikshan is driven by a live-cloning process, which generates a replica (debug

container) of production services for debugging or testing, cloned from a production container which

provides the real output to the user. The debug container provides a sandbox environment, for

safe execution of test-cases/debugging done by the users without any perturbation to the execution

environment. As a part of this framework, we have designed customized-network proxy agents,

which replicate inputs from clients to both the production and test-container, as well safely discard

all outputs from the test-container. Together the network proxy, and the debug container ensure both

compute and network isolation of the debugging environment, while at the same time allowing the

user to debug the application. We believe that this piece of work provides the first of it’s kind practical

real-time debugging of large multi-tier and cloud applications, without requiring any application

down-time, and minimal performance impact.

The principal hypothesis of this dissertation is that, for large-scale service-oriented-applications

(SOA) it is possible to provide a live debugging environment, which allows the developer to debug the

target application without impacting the production system. Primarily, we will present an approach

for live debugging of production systems. This involves discussion of Parikshan framework which

1Parikshan is the sanskrit word for testing



forms the backbone of this dissertation. We will discuss how to clone the containers, split and

isolate network traffic, and aggregate it for communication to both upstream and downstream tiers,

in a multi-tier SOA infrastructure. As a part of this description, we will also show case-studies

demonstrating how network replay is enough for triggering most bugs in real-world applications. To

show this, we have presented 16 real-world bugs, which were triggered using our network duplication

techniques. Additionally, we present a survey of 220 bugs from bug reports of SOA applications

which were found to be similar to the 16 mentioned above.

Secondly, we will present iProbe a new type of instrumentation framework, which uses a

combination of static and dynamic instrumentation, to have an order-of-magnitude better performance

than existing instrumentation techniques. The iProbe tool is the result of our initial investigation

towards a low-overhead debugging tool-set, which can be used in production environments. Similar

to existing instrumentation tools, it allows administrators to instrument applications at run-time with

significantly better performance than existing state-of-art tools. We use a novel two-stage process,

whereby we first create place-holders in the binary at compile time and instrument them at run-time.

iProbe is a standalone tool that can be used for instrumenting applications, or can be used in our

debug container with Parikshan to assist the administrator in debugging.

Lastly, while Parikshan is a platform to quickly attack bugs, in itself it’s a debugging platform.

For the last section of this dissertation we look at how various existing debugging techniques can

be adapted to live debugging, making them more effective. We first enumerate scenarios in which

debugging can take place: post-facto - turning livedebugging on after a bug has occurred, proactive -

having debugging on before a bug has happened. We will then discuss how existing debugging tools

and strategies can be applied in the debug container to be more efficient and effective. We will also

discuss potential new ways that existing debugging mechanisms can be modified to fit in the live

debugging domain.
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Chapter 1

Introduction

Although software bugs are nothing new, the complexities of virtualized environments coupled with

large distributed systems have made bug localization harder. The large size of distributed systems

means that any downtime has significant financial penalties for all parties involved. Hence, it is

increasingly important to localize and fix bugs in a very short period of time.

Existing state-of-art techniques for monitoring production systems [McDougall et al., 2006;

Park and Buch, 2004; Prasad et al., 2005] rely on light-weight dynamic instrumentation to cap-

ture execution traces. Operators then feed these traces to analytic tools [Barham et al., 2004;

Zhang et al., 2014] to connect logs in these traces and find the root-cause of the error. However,

dynamic instrumentation has a trade-off between granularity of tracing and the performance over-

head. Operators keep instrumentation granularity low, to avoid higher overheads in the production

environment. This often leads to multiple iterations between the debugger and the operator, to

increase instrumentation in specific modules, in order to diagnose the root-cause of the bug. Another

body of work has looked into record-and-replay [Altekar and Stoica, 2009; Dunlap et al., 2002;

Laadan et al., 2010; Geels et al., 2007a] systems which capture the log of the system, in order

to faithfully replay the trace in an offline environment. Replay systems try and capture system

level information, user-input, as well as all possible sources of non-determinism, to allow for in-

depth post-facto analysis of the error. However, owing to the amount of instrumentation required,

record-and-replay tools deal with an even heavier overhead, making them impractical for real-world

production systems.

The high level goal of this thesis is to present tools and techniques which can help to reduce the
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time to bug localization, and can be applied in live running production service systems. Our initial

efforts focused on having the minimum possible instrumentation in the production system, which

could at the same time be dynamically turned on or off. We developed iProbe (see chapter 5)

an intelligent instrumentation tool, which combined the advantages of static instrumentation and

dynamic instrumentation to give an order of magnitude better performance in terms of overhead

compared to existing state-of-art tools [McDougall et al., 2006; Prasad et al., 2005; Buck and

Hollingsworth, 2000; Luk et al., 2005]. iProbe uses placeholders added in the application binary

at compile time, which can be leveraged to insert instrumentation when the application is actually

running. In comparison, most current tools use trampoline based techniques (see DTrace [McDougall

et al., 2006], SystemTap [Prasad et al., 2005], Dyninst [Buck and Hollingsworth, 2000]), or just in

time execution (PIN [Luk et al., 2005], Valgrind [Nethercote and Seward, 2007]), requiring complex

operations to allow for safe execution and incurs a much higher overhead. Our compilation driven

place-holders allow us to leverage pre-existing space in the binary to safely insert instrumentation

and achieve a much better performance.

However, in the process of our experiments we realized one critical limitation of instrumentation

based techniques - instrumentation and monitoring is always done within the code, and hence

is sequentially executed. Since instrumentation will always directly impact the performance of

production applications, it needs to be limited to allow for good user experience. A better way to

approach this problem is to decouple debugging instrumentation and application performance, so

that there is no direct impact of the instrumentation on the production application. This thesis is

centered around the idea of a new debugging paradigm called “live debugging”, whereby developers

can debug/instrument the application while isolating the impact of this instrumentation from the

user-facing production application. The key idea behind this approach is to give faster time-to-bug

localization, deeper insight into the health and activity within the system, and to allow operators to

dynamically debug applications without fear of changing application behavior. We leverage existing

work in live migration and light-weight user-space container virtualization, to provide an end-to-end

workflow for debugging. Our system replicates the application container into a clone which can be

used solely for the purpose of debugging the application.

Our work is inspired by three key observation: Firstly, we observe that most service-oriented

applications(SOA) are launched on cloud based infrastructures. These applications use virtualization
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to share physical resources, maintained by third-party vendors like Amazon EC2 [Amazon, 2010],

or Google compute [Krishnan and Gonzalez, 2015] platforms. Furthermore, there is an increasing

trend towards light-weight user-space container virtualization, which is less resource hungry, and

makes sharing physical resources easier. Frameworks like docker [Merkel, 2014] allow for scaled

out application deployment, by allowing each application service instance to be launched in it’s own

container. For instance, an application server, and a database server making up a web-service, can be

hosted on their own containers, thereby sandboxing each service, and making it easier to scale out.

Secondly, we observe a trend towards Dev-ops [Httermann, 2012] by the software engineering

industry. DevOps stresses on close coupling between software developers and operators, in order to

have shorter release cycles (Facebook web has 2 releases a day, and one mobile release every 4 weeks

and Flickr has 10 deployment cycles per day [Rossi, 2014; Allspaw J., 2009]). This re-emphasizes the

need to have a very short time to diagnose and fix a bug especially in service oriented application. We

believe by providing a means to observe the application when the bug is active, we will significantly

reduce the time to bug localization.

Lastly, our key insight is that for most service-oriented applications (SOA), a failure can be

reproduced simply by replaying the network inputs passed on to the application. For these failures,

capturing very low-level sources of non-determinism (e.g. thread scheduling or general system calls,

often with high overhead) is unnecessary to successfully and automatically reproduce the buggy

execution in a development environment. We have evaluated this insight by studying 16 real-world

bugs, which we were able to trigger by only duplicating and replaying network packets. Furthermore

we categorized 220 bugs from three real-world applications, finding that most were similar in nature

to the 16 that were reproduced, suggesting that our approach would be applicable to them as well.

This thesis will make the following contributions:

First, in Chapter 3 we will present a framework for “live debugging” applications while they

are running in the production environment. This will involve a description of our system called

Parikshan1, which allows real-time debugging without any impact on the production service. We

provide a facility to sandbox the production and debug environments so that any modifications in

the debug environment do not impact user-facing operations. Parikshan avoids the need of large

test-clusters, and can target specific sections of a large scale distributed application. In particular,

1Parikshan is the Sanskrit word for testing
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Parikshan allows debuggers to apply debugging techniques with deeper granularity instrumentation,

and profiling without worrying that the instrumentation will impact the production application

performance.

In chapter 4 we will present details of our case-study presenting real-world bugs which were

triggered by network input alone, and which show why using Parikshan would be enough to capture

most real-world bugs. Each case study presents a different variety of bugs from the following classes:

performance, semantic, non-deterministic, configuration and resource leak. We believe that these

bugs form the most common classification of bugs in service oriented applications.

In chapter 5 we will present a dynamic instrumentation mechanism called iProbe. As explained

earlier, chronologically iProbe was our first tool developed towards achieving the goal of a low-

overhead production debugging. iProbe uses a novel two-stage design, and offloads much of

the dynamic instrumentation complexity to an offline compilation stage. It leverages standard

compiler flags to introduce “place-holders” for hooks in the program executable. Then it utilizes an

efficient user-space “HotPatching” mechanism which modifies the functions to be traced and enables

execution of instrumented code in a safe and secure manner. iProbe can be used as a standalone

instrumentation tool or can be used in the debug container with Parikshan for further assisting the

debugger to localize the bug.

In the final chapter 6 of this thesis we focus on applications of live debuggging. In particular we

discuss several existing techniques and how they can be coupled with live debugging. We discuss

step-by-step scenarios where debugging on the fly can be helpful, and how it can be applied. We also

briefly introduce a new technique called budget limited instrumentation technique for live debugging.

This technique leverages existing work on statistical debugging, and queuing theory to lay a statistical

foundation for allocating buffer sizes and various configuration parameters. It proposes a reactive

mechanism to adapt to the overhead of instrumentation bounds using sampling techniques.

The rest of this chapter is organized as follows. Firstly in section 1.1 we define terms and

terminologies used in the rest of this thesis. Section 1.2 further defines the scope of our problem

statement, definitions, and classifications of the bugs. Section 1.3 illustrates the requirements this

thesis must meet. Next, in section 1.4 we define the scope of the techniques presented in this thesis.

Section 1.5 briefly goes over the proposed approach presented in this thesis. In section 1.6 we give

the hypothesis of this thesis. Section 1.7 lists some of the assumptions made in this thesis, and
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section 1.8 gives an outline of the organization of the rest of this document.

1.1 Definitions

Before we further discuss the problem statement, requirements, and approach,this section first

formalizes some of the terms used throughout this thesis.

• Live Debugging For the purpose of this thesis, we define live debugging as a mechanism to

debug applications on the fly while the production services are running and serving end-users.

• The development environment refers to a setting (physical location, group of human devel-

opers, development tools, and production and test facilities) in which software is created and

tested by software developers and is not made available to end users. The debugging process

in the development environment can be interactive, and can have a high overhead.

• A production environment, or use environment, refers to a setting in which software is

no longer being modified by software developers and is being actively being used by users.

Applications in production cannot have a high instrumentation/debugging overhead, as it is

detrimental to the users.

• An error, also referred to as a defect or bug, is the deviation of system external state from

correct service state.

• A fault is the adjudged or hypothesized cause of an error.

• A failure is an event that occurs when the delivered functionality deviates from correct

functionality. A service fails either because it does not comply with the functional specification,

or because this specification did not adequately describe the system function.

• DevOps is a software development method that stresses communication, collaboration (in-

formation sharing and web service usage), integration, automation and measurement of co-

operation between software developers and other information-technology (IT) professionals.

DevOps acknowledges the interdependence of software development and IT operations. It

aims to help an organization rapidly produce software products and services and to improve

operations performance quality assurance.
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• Development/Operational Phase Development phase is the phase where the application is

being developed. The process involves testing, and debugging and iterative development such

as adding bug fixes etc. Operational phase is where the application is being operated and used

by active users

• Downstream Servers For a given application or service, the downstream server is the server

which sends it a request.

• Upstream Servers For a given application or service, the upstream servers are servers which

process it’s requests and send it responses.

• Production Container This is the container in which the original production service is hosted

and where all incoming requests are routed.

• Debug Container This is a replica of the production container, where a copy of the production

service is running. The debug container is used for debugging purposes, and provides the live

debugging service.

• Replica A replica is a clone of a container, with an exact clone of the file system and the

processes running in the container. For the purpose of this thesis debug container and replica

refer to the same thing.

• Service Oriented Applications Service oriented applications are applications which offer

transactional services via network input, and provide responses on the network as well.

1.2 Problem Statement

Despite advances in software engineering bugs in applications are inevitable. The complexity of

distributed and large scale applications, with an increased emphasis on shorter development cycles

has made debugging more difficult. The key challenge of debugging modern applications is twofold:

firstly, the complexity due to a combination of distributed components interacting together, and

secondly fast debugging of applications to assure a short-time-to debug.

We have observed that while several debugging techniques exist, most of them focus on localizing

errors in the development phase. Production level debugging techniques are ad-hoc in nature, and
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generally rely on unstructured logs printed as exceptions or transaction events using print outs

from within the application. While such logs are good, and can often give contextual information

to the developer or the operator, they are meant to provide an indication to only expected errors.

Furthermore, they do not provide a systematic way to localize such bugs.

More systematic approaches such as record-and-replay systems offer a complete picture of the

running production systems. These tools capture the exact state, and execution of the system, and

allow for it to be faithfully replayed offline. This saves the debugger hours of effort in re-creating the

bug, it’s input and application state. However, in order to capture such detailed information, there

is a high performance penalty on the production systems. This is often unacceptable in real-world

scenarios, which is why such techniques have only found limited use.

We further observe that debugging is an iterative process. While systematic approaches can

provide a complete picture, developer insight is paramount. The debugging process usually involves

several iterations where the debugger uses clues present in error logs, system logs, execution traces

etc. to understand and capture the source of the error. This process can have an impact on real-

world applications, hence traditionally the debugging and the production phase are kept completely

separate.

Production level dynamic program instrumentation tools [McDougall et al., 2006; Prasad et

al., 2005; Park and Buch, 2004] enable application debugging, and live insights of the application.

However, these are executed inline with the program execution, thereby incurring an overhead. The

perturbations and overhead because of the instrumentation could restrict the tools from being used in

production environments. Thus we require a solution which allows operators/developers to observe,

instrument, test or fix service oriented applications in parallel with the production. The techniques

and mechanisms in this thesis will aim to provide a live debugging environment, which allows

debuggers a free reign to debug, without impacting the user-facing application.

1.3 Requirements

Our solution should meet the following requirements.

1. Real-Time Insights: Observing application behavior as the bug presents itself will allow for

a quick insight and shorter time to debug. Any solution should allow the debugger to capture
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system status as well as observe, whatever points he wishes in the execution flow.

2. Sanity and Correctness: If the debugging is to be done in a running application with real

users, it should be done without impacting the outcome of the program. The framework must

ensure that any changes to the application’s state or to the environment does not impact the

user-facing production application.

3. Language/Application Agnostic: The mechanisms presented should be applicable to any

language, and any service oriented application (our scope is limited to SOA architectures).

4. Have negligible performance impact The user of a system that is conducting tests on itself

during execution should not observe any noticeable performance degradation. The tests must

be unobtrusive to the end user, both in terms of functionality and any configuration or setup, in

addition to performance.

5. No service interruption: Since we are focusing our efforts on service oriented systems, any

solution should ensure that there is not impact on the service, and the user facing service

should not be interrupted.

1.4 Scope

Although we present a solution that is designed to be general purpose and applicable to a variety of

applications, in this thesis we specifically limit our scope to the following:

1.4.1 Service Oriented Applications

The traditional batch-processing single node applications are fast disappearing. Modern day devices

like computers, IOT’s, mobile’s and web-browsers rely on interactive and responsive applications,

which provide a rich interface to it’s end-users. Behind the scenes of these applications are several

SOA applications working in concert to provide the final service. Such services include storage,

compute, queuing, synchronization, application layer services. One common aspect of all of these

services is the fact that they get input from network sources. Multiple services can be hosted on

multiple machines(many-to-many deployment), and each of them communicates with the other as

well as the user using the network. The work presented in this thesis leverages duplication of network
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based input to generate a parallel debugging environment. In this sense, the scope of the applications

targeted in this thesis are limited to service oriented applications, which gather input through the

network.

1.4.2 Non-Crashing Bugs

In this thesis, we have primarily focused on continuous debugging in parallel with the production

application. We have looked at a variety of bugs - performance, resource leak, concurrency, semantic,

configuration etc. However, we also try to debug an active problem in the application.

Hence, although a bug which immediately crashes, can still be investigated using Parikshan, it

would not be an ideal use-case scenario. On the other hand non-crashing bugs such as performance

slow-downs, resource leaks which stay in the application long enough, fault tolerant bugs, which do

not crash the entire system or similar non-crashing concurrency, semantic and configuration bugs,

can be investigated in parallel to the original applications thereby reducing the investigation time,

and the time to fix the bug.

1.4.3 Native Applications

One of the tools presented in this thesis is iProbe- an intelligent hybrid instrumentation tool.

iProbe uses place-holders inserted at compile time in the binary, and leverages them to dynamically

patch them at the run-time. In it’s current implementation iProbe’s techniques can be only applied

on native applications.

Managed and run-time interpreted languages such as Java, and .NET can also theoretically have

a similar approach built in, but that is out of the scope of this thesis.

1.5 Proposed Approach

Analyzing the executions of a buggy software program is essentially a data mining process. Although

several interesting methods have been developed to trace crashing bugs (such as memory violations

and core dumps), it is still difficult to analyze non-crashing bugs. Studies have shown that several

bugs in large-scale systems lead to either a changed/inconsistent output, or impact the performance

of the application. Examples of this are slow memory leaks, configuration, or performance bugs,



10 CHAPTER 1. INTRODUCTION

which do not necessarily stop all services, but need to be fixed quickly so as to avoid degradation in

the QoS.

Existing approaches towards debugging production bugs mostly rely on application logs, and

transaction logs which are inserted within the application by the developer himself, to give an idea of

the progress of the application, and to guide the debugger towards errors. While these logs provide

valuable contextual information, they can only be used for expected bug scenarios. Furthermore,

often they provide incomplete information, or are just triggered as exceptions without providing

a complete trace. Modern applications also contain a level of fault tolerance, which means that

applications are likely to continue to spawn worker threads and provide service despite faults which

happen at run-time. This often means that the debugger loses the context of the application.

Other more systematic debugging techniques have been used in record-and-replay techniques

which allow operators to faithfully capture the entire execution as well as the status of the operating

system as well as the application. This allows the debuggers to carefully debug the application offline

and understand the root-cause of the bug. However, an obvious disadvantage of such techniques is

that the recording overhead can be relatively high, especially in unpredictable worst-case scenarios

(for e.g. spikes in user requests etc.). This makes the use of such techniques impractical for most

real-world production systems.

Researchers have also studied non-systematic inference based techniques, which allow for

lightweight tracing or capturing application logs in distributed applications, and then threading them

together to form distributed execution flows. These inference techniques [Barham et al., 2004;

Marian et al., 2012; Wang et al., 2012; Zhang et al., 2014; Sambasivan et al., 2011] do not add much

overhead to the production system, as they typically use production instrumentation tools, or existing

application logs. However, owing to the low amount of instrumentation and data captured, these

tools focus on finding faults at higher granularity(module, library, component, node etc.) instead of

the root-cause of the error at a code level (function, class, object etc.). Additionally most of these

tools use logs from pre-instrumented binaries, thereby limiting them to expected bugs/error patterns.

We propose a paradigm shift in debugging service oriented applications, with a focus on

debugging applications running in the production environment. We call this technique “live de-

bugging”: this technique will provide real-time insights into running systems, and allow developers

to debug applications without fearing crashes in the production application. We believe that this
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will in turn lead to much shorter time to bug resolution, hence improving application reliability, and

reducing financial costs in case of errors. In this thesis we present an end-to-end work-flow of lo-

calizing production bugs, which includes a framework for live debugging, new live debugging

techniques, and mechanisms to make applications live debugging friendly.

1.6 Hypothesis

The principal hypothesis we test in this thesis is as follows:

It is possible to have sandboxed, on-the-fly debugging parallel to the production application

for service oriented applications with negligible overhead on the production environment and no

discernable impact to user-facing services.

In order to test this, we have developed the following technologies:

1. A framework for sandboxed, online debugging of production bugs with no overhead (Parikshan)

2. An intelligent compiler assisted dynamic instrumentation tool (iProbe)

3. Applications of live on-the-fly debugging

1.7 Assumptions

The work presented in this thesis is designed so that it can be applied in the most generic cases.

However, the implementation and some of the design motivation make some key assumptions which

are presented in this section:

1.7.1 Resource Availability

One of the core insight driving our live debugging technology is the increasing availability of

compute resources. With more and more applications being deployed on cloud infrastructure, in

order to ease scaling out of resources and sharing of compute power across multiple services - The

amount of computing power available is flexible and plentiful. Several existing services like Amazon
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EC2 [Amazon, 2010] and Google Compute [Krishnan and Gonzalez, 2015] provide infrastructure-

as-a-service and form the backbone of several well known cloud services.

Parikshan assumes cheap and ample resource availability for most modern day services, and ease

of scalability. We leverage this abundance of resources, to utilize unused resources for debugging

purposes. As mentioned earlier, Parikshan uses unused containers to run a replica of the original

production service, solely for the purpose of debugging. While it is difficult to quantify, we believe

that the advantage of on-the-fly debugging and quick bug isolation outweighs the cost of these extra

resources.

1.8 Outline

The rest of this thesis is organized as follows:

• Chapter 3 discusses the design and implementation of the Parikshan framework which enables

live debugging. In this chapter we will first give a brief motivation, and discuss the overall

design, and how our framework fits into service-oriented applications. We then go into a

detailed explanation of the design of each of the components of network request duplication

as well as our live cloning algorithm. We follow this up with implementation details, and

evaluation scenarios using both simulation results and real-world experiments which show the

performance of our framework.

• Chapter 4 we discuss case-studies involving 16 real-world bugs, from 5 well known service

oriented application. We show how network input replay is enough to capture most real-world

bugs (concurrency, performance, semantic, resource leak, and mis-configuration). In addition,

to further help our claim, we did a survey of 220 real-world bugs which we manually classified

and found were similar to the 16 bugs stated above.

• Chapter 5 introduces iProbe a novel hybrid instrumentation technique. We first begin with

an explanation of iProbe’s design, which is split in a two phase process - ColdPatching

and HotPatching. This is explained in stateful diagrams to show how the code is modified

at different states in the binary. We then show safety considerations of iProbe and this is

followed by an extended design which shows how iProbe can be applied to applications
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without compile time modifications as well. Next we compare iProbe’s approach with

traditional trampoline executions. We then follow this with the implementation, and a short

description of fperf which is a application of iProbe for hardware monitoring. We follow

this up with evaluation of iProbe which shows iProbe’s overhead in cold-patching and

hot-patching phase, and it’s comparison with traditional tools.

• While the previous two chapters build the base for live debugging, Chapter 6 discusses how

these tools can be leveraged to do real-world debugging. In the first part of this chapter, we

discuss several important advantages and limitations, which must be kept in mind when using

Parikshan to debug applications. Then we discusss existing debugging techniques which can

be used in tandem with live debugging to provide a more effective means for localizing the

bug. We also introduce a new technique called adaptive debugging. Adaptive debugging

extends existing work on statistical debugging in Parikshan to increase or decrease the degree

of instrumentation in order to improve the statistical odds of localizing the bug.

• In chapter 8, we conclude this thesis, highlighting the contributions of our techniques. Addi-

tionally, this chapter also includes several future work possibilities that can arise from this

thesis including some short-term future work and long-term possibilities.
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Chapter 2

Background and Motivation

2.1 Recent Trends

Parikshan is driven by some recent trends in the industry towards faster bug resolution and quicker

development, and scaled deployment. In this section we discuss three such trends in the industry

which are of particular relevance to Parikshan.

2.1.1 Software development trends

Software development paradigms have evolved over the years from a more documentation oriented

process to quicker and faster releases. The software development industry is working towards faster

evolving softwares, rather than building monolithic softwares for long term uses. Similarly software

development no longer follows strict regimented roles of developer, administrator/operator, tester etc,

instead new paradigms are being developed which encourage cross-functionalities.

One recent trend in software development processes is agile [Martin, 2003] and extreme [Beck,

2000] programming development paradigms. Compared to traditional waterfall model [Petersen

et al., 2009], both agile and extreme programming focus on faster response to changing customer

demands, and a quicker delivery time. Agile programming for instance works on the principle of

very short development cycles called -scrums. At the end of each scrum, there should be a working

software product that can be readily deployed. The work-items are generally short, and goal oriented,

and a scrum will usually last at most 2 weeks.

Agile development focuses on shorter development cycle, to apply patches, bug-fixes and having
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a leaner team/operations. Parikshan’s live-debugging capability is yet another tool to facilitate faster

software development and debugging, by allowing developers to debug their applications in parallel

to the one deployed in production. We believe agile development can be tied up with Parikshan to

have an end-to-end quick test, debug, and deploy strategy and make application development an even

more lean process.

Figure 2.1: Devops software development process

Another trend in software development is cross-functional development and production appli-

cation management called Devops [Allspaw J., 2009]. Devops is a term used to refer to a set of

practices that emphasizes the collaboration and communication of both software developers and other

information-technology (IT) professionals (operators/administrators) while automating the process

of software delivery and infrastructure changes. The key in devops is the close collaboration of

developers and operators, and an interchangable role (i.e. developers are also operators for real-time

critical systems), or alternatively having developers and operators being active in the entire software

cycle (including QA and operations). The old view of operations tended towards the Dev side being

the makers and the Ops side being the people that deal with the creation after its birth the realization

of the harm that has been done in the industry of those two being treated as siloed concerns is the

core driver behind DevOps.

The driving force behind this change, where expensive resources(developers), are applied on

what is traditionally managed by operators(with lower expertise or understanding of the software) -

is to have faster responses and a shorter time to debug. This necessity of having a shorter time to
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debug, and the availability of developers in the operation stage is one of the trend which motivates

live debugging. Clearly developers who have much better understanding of the source code (having

written it themselves), will be able to debug the application faster as long as they have some degree

of visibility and debug-capability within the application. We believe that Parikshan’s livedebugging

framework will allow such developers to debug their application in an isolated yet parallel environ-

ment, which clones in real-time the behavior without impacting the production. This will greatly

reduce development overhead by giving crucial insight and make the feedback cycle shorter. This

will shorten the time to debug, and will easily fit into a debugging paradigm in an already increasing

trend of devops..

2.1.2 Microservice Architecture

As applications grow in size they grow more and more complex with several interacting modules.

With iterative improvements in every release applications tend to grow in code-size with large

obsolete code-bases, un-productive technology, and which is difficult to maintain or modify owing

to it’s size and complexity. Many organizations, such as Amazon, eBay, and Netflix, have solved

this problem by adopting what is now known as the Microservices Architecture pattern. Instead of

building a single monstrous, monolithic application, the idea is to split your application into set of

smaller, interconnected services.

A service typically implements a set of distinct features or functionality, such as order man-

agement, customer management, etc. Each microservice is a mini-application that has its own

hexagonal architecture consisting of business logic along with various adapters. Some microservices

would expose an API thats consumed by other microservices or by the applications clients. Other

microservices might implement a web UI. At runtime, each instance is often a cloud VM or a Docker

container.

Figure 2.2 shows the micro-service architecture of a car renting agency website. Each functional

area is implemented as it’s own independent service. Moreover, the web application is split into a

set of simpler web applications (such as one for passengers and one for drivers in our taxi-hailing

example). This makes it easier to deploy distinct experiences for specific users, devices, or specialized

use cases.
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Figure 2.2: An example of a microservice architecture for a car renting agency website

2.1.3 Virtualization, Scalability and the Cloud

Modern day service oriented applications, are large and complex systems, which can serve billions

of users. Facebook has 1.79 billion active users every month, and Google search has approximately

1.71 billion users, similarly twitter, netflix, instagram, and several other such websites have a huge

base of users.
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2.2 Current debugging of production systems

Before moving forward with a new software debugging paradigm, we want to discuss the current

state-of-art debugging mechanisms followed in the industry. The software development cycle consists

of the following four components - software development, monitoring, modeling & analytics, and

software debugging.

Here monitoring involves getting periodic statistics or insight regarding the application, when

deployed in the production environment, either using instrumentation within the application or

using periodic sampling of resource usage in the system. Monitoring gives an indication regarding

the general health of the system, and can alert the user incase anything has gone wrong. System

level default tools provided by most commodity operating systems, like process monitors in linux,

mac and windows, provide a high level view of real-time resource usage in the system. On the

other hand, software event monitoring tools like nagios, ganglia, and rsyslog [Enterprises, 2012;

Massie et al., 2004; Matulis, 2009] aggregate logs and provide a consolidated view of application

operations a cluster of machines to the administrator. On the other hand, tools like SystemTap [Prasad

et al., 2005], DTrace [McDougall et al., 2006] allow operators to write customized instrumentation

and dynamically patch them into applications to allow for a much deeper understanding of the system

(albeit at higher overheads).

Modeling and analytics is generally a follow up step, which uses the output of monitoring and

can provide useful insights using the monitoring data in real-time to highlight outliers and unexpected

behavior. Tools like loggly [loggly, ], ELK [ElasticSearch, ], Splunk [splunk, ], allow operators

to search logs in real-time, as well as provide statistical analytics for different categories of logs.

Academic tools like vpath [Tak et al., 2009], magpie [Barham et al., 2004], spectroscope [Sambasivan

et al., 2011], appinsight [Ravindranath et al., 2012], amongst others can stitch events together to give

a much more detailed transaction flow analysis.

As can be seen in figure 2.3, both monitoring and analytics happen in real-time in parallel

to production applications. However, without any interaction with the running application these

techniques are only limited to realizing that the production system has a bug, and potentially localizing

the error. The actual root-cause extraction unfortunately currently relies on offline debugging.

Parikshan aims to move the debugging process from an offline process to a completely or partially

online (real-time) process in order to shorten time to debugging. In some cases our framework
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Figure 2.3: Live Debugging aims to move debugging part of the lifecycle to be done in parallel to the

running application, as currently modeling, analytics, and monitoring is done

can also be used for patch testing and fix validation. In the next section we will see a real-world

motivation scenario for Parikshan.

2.3 Motivating Scenario

Consider the complex multi-tier service-oriented system shown in Figure 2.4 that contains several

interacting services (web servers, application servers, search and indexing, database, etc.). The

system is maintained by operators who can observe the health of the system using lightweight

monitoring that is attached to the deployed system. At some point, an unusual memory usage is

observed in the glassfish application server, and some error logs are generated in the Nginx web

server. Administrators can then surmise that there is a potential memory leak/allocation problem

in the app-server or a problem in the web server. However, with a limited amount of monitoring

information, they can only go so far.

Typically, trouble tickets are generated for such problems, and they are debugged offline. However

using Parikshan, administrators can generate replicas of the Nginx and Glassfish containers as Nginx-

debug and glassfish-debug. Parikshan’s network duplication mechanism ensures that the debug
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replicas receive the same inputs as the production containers and that the production containers

continue to provide service without interruption. This separation of the production and debug

environment allows the operator to use dynamic instrumentation tools to perform deeper diagnosis

without fear of additional disruptions due to debugging. Since the replica is cloned from the original

potentially “buggy” production container, it will also exhibit the same memory leaks/or logical errors.

Additionally, Parikshan can focus on the “buggy” parts of the system, without needing to replicate

the entire system in a test-cluster. This process will greatly reduce the time to bug resolution, and

allow real-time bug diagnosis capability.

The replica can be created at any time: either from the start of execution, or at any point during

execution that an operator deems necessary, allowing for post-facto analysis of the error, by observing

execution traces of incoming requests (in the case of performance bugs and memory leaks, these will

be persistent in the running system). Within the debug replica, the developer is free to employ any

dynamic analysis tools to study the buggy execution, as long as the only side-effect those tools is on

execution speed.

Cloned test containers & 
network duplication 

Debug  
output 

1.  Zero Overhead 
2.  Live debugging 
3.  Same system state 
4.  Less resources used 
5.  Fast time to debug 

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5 Tiers n 

User observes 
error & creates 

sandbox 
clones 

Live  
production 

system 

 
Sandbox  

cloned debug 
system 

Figure 2.4: Workflow of Parikshan in a live multi-tier production system with several interacting

services. When the administrator of the system observes errors in two of it’s tiers, he can create a

sandboxed clone of these tiers and observe/debug them in a sandbox environment without impacting

the production system.
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2.4 Summary

In this chapter we first discussed some recent software trends which motivated the development of

Parikshan, and show that it complements as well as is driven by the current direction of industry.

We then discussed the current state-of-art practices followed in the industry for most production

applications, and showed the current limitation in doing real-time debugging. We then discussed a

motivation scenario highlighting a real-world use-case for Parikshan, and how livedebugging could

hypothetically take place.
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Part I

Parikshan
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Chapter 3

Parikshan

3.1 Introduction

Rapid resolution of incident (error/alert) management [Lou et al., 2013] in online service-oriented

systems [Newman, 2015; Borthakur, 2008; Lakshman and Malik, 2010; Carlson, 2013] is extremely

important. The large scale of such systems means that any downtime has significant financial

penalties for all parties involved. However, the complexities of virtualized environments coupled

with large distributed systems have made bug localization extremely difficult. Debugging such

production systems requires careful re-creation of a similar environment and workload, so that

developers can reproduce and identify the cause of the problem.

Existing state-of-art techniques for monitoring production systems rely on execution trace

information. These traces can be replayed in a developer’s environment, allowing them to use

dynamic instrumentation and debugging tools to understand the fault that occurred in production. On

one extreme, these monitoring systems may capture only very minimal, high level information, for

instance, collecting existing log information and building a model of the system and its irregularities

from it [Barham et al., 2004; Erlingsson et al., 2012; Kasikci et al., 2015; Eigler and Hat, 2006].

While these systems impose almost no overhead on the production system being debugged (since they

simply collect log information already being collected, or have light-weight monitoring), they are

limited in the kind of bugs that can be reported as they only have pre-defined log-points as reference .

On the other extreme, some monitoring systems capture complete execution traces, allowing the entire

application execution to be exactly reproduced in a debugging environment [Altekar and Stoica, 2009;
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Dunlap et al., 2002; Laadan et al., 2010; Geels et al., 2007a]. Despite much work towards minimizing

the amount of such trace data captured, overheads imposed by such tracing can still be unacceptable

for production use: in most cases, the overhead of tracing is at least 10%, and it can balloon up to

2-10x overhead. [Patil et al., 2010; Wang et al., 2014].

We seek to allow developers to diagnose and resolve bugs in production service-oriented systems

without suffering any performance overhead due to instrumentation. Our key insight is that for

most service-oriented systems, a failure can be reproduced simply by replaying the network inputs

passed to the application. For these failures, capturing very low-level sources of non-determinism

(e.g. thread scheduling or general system calls, often with very high overhead) is unnecessary to

successfully and automatically reproduce the buggy execution in a development environment. We

evaluated this insight by studying 16 real-world bugs (see Section 4.3), which we were able to trigger

by only duplicating and replaying network packets. Furthermore, we categorized 220 bugs from

three real world applications, finding that most of these were similar in nature to the 16 that we

reproduced. This suggests that our approach would be applicable to the bugs in our survey as well

(see Section 4.4).

Guided by this insight, we have created Parikshan, which allows for real-time, online debugging

of production services without imposing any instrumentation performance penalty. At a high level,

Parikshan leverages live cloning technology to create a sandboxed replica environment. This replica

is kept isolated from the real world so that developers can modify the running system in the sandbox

to support their debugging efforts without fear of impacting the production system. Once the replica

is executing, Parikshan replicates all network inputs flowing to the production system, buffering

and feeding them (without blocking the production system) to the debug system. Within that debug

system, developers are free to use heavy-weight instrumentation that would not be suitable in a

production environment to diagnose the fault. Meanwhile, the production system can continue to

service other requests. Parikshan can be seen as very similar to tools such as Aftersight [Chow et

al., 2008] that offload dynamic analysis tasks to replicas and VARAN [Hosek and Cadar, 2015] that

support multi-version execution, but differs in that its high-level recording level (network inputs,

rather than system calls) allows it to have significantly lower overhead. A more detailed description

of Aftersight and VARAN can be found in section 7.1.2.

Parikshan focuses on helping developers debug faults online — as they occur in production
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systems. We expect Parikshan to be used in cases of tricky bugs that are highly sensitive to their

environment, such as semantic bugs, performance bugs, resource-leak errors, configuration bugs, and

concurrency bugs. Parikshan can be used to diagnose and resolve both crashing and non-crashing

bugs. A non-crashing bug the production system remains running even after a bug is triggered, for

instance, to continue to process other requests. A crashing bug on the other hand leads to system

fault and crashes, unable to process any further requests. We present a more detailed explanation of

these categories in Section 4.3.

We leverage container virtualization technology (e.g., Docker [Merkel, 2014], OpenVZ [Kolyshkin,

2006]), which can be used to pre-package services so as to make deployment of complex multi-tier

systems easier (i.e. DockerHub [DockerHub, ; Boettiger, 2015] provides pre-packaged containers for

storage, web-server, database services etc.). Container based virtualization is now increasingly being

used in practice [Bernstein, 2014]. In contrast to VM’s, containers run natively on the physical host

(i.e. there is no hypervisor layer in between), this means that there is no additional overhead, and

near-native performance for containers [Felter et al., 2015; Xavier et al., 2013]. While Parikshan

could also be deployed using VM’s, container virtualization is much more light weight in terms of

resource usage.

The key benefits of our system are:

• No instrumentation impact on production: While existing approaches have focused on mini-

mizing the recording overhead. Parikshan uses novel non-blocking network duplication to avoid

any overhead at all in the production environment due to the instrumentation itself. While there

may be a negligible run-time overhead (<2%) because asynchronous memory copy operation in

network forwarding, there is no direct impact of instrumentation on production service. Hence

debuggers can have higher granularity instrumentation without impacting production.

• Sandbox debugging: Parikshan provides a cloned sandbox environment to debug the production

application. This allows a safe mechanism to diagnose the error, without impacting the functionality

of the application.

• Capture large-scale context: Allows capturing the context of large scale production systems,

with long running applications. Under normal circumstances capturing such states is extremely

difficult as they need a long running test input and large test-clusters.

The rest of this chapter is organized as follows. In section 3.2, we explain the design and
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Figure 3.1: High level architecture of Parikshan, showing the main components: Network Dupli-

cator, Network Aggregator, and Cloning Manager. The replica (debug container) is kept in sync with

the master (production container) through network-level record and replay. In our evaluation, we

found that this light-weight procedure was sufficient to reproduce many real bugs.

implementation of the Parikshan framework and each of it’s internal components. Next in section 3.3

we discuss some key aspects and challenges when using Parikshan in real-world systems. This is

followed by evaluation in section 3.4, and a summary in section 3.5.

3.2 Parikshan

In Figure 3.1, we show the architecture of Parikshan when applied to a single mid-tier application

server. Parikshan consists of 3 modules: Clone Manager: manages “live cloning” between the pro-

duction containers and the debug replicas, Network Duplicator: manages network traffic duplication

from downstream servers to both the production and debug containers, and Network Aggregator:

manages network communication from the production and debug containers to upstream servers.

The network duplicator also performs the important task of ensuring that the production and debug

container executions do not diverge. The duplicator and aggregator can be used to target multiple

connected tiers of a system by duplicating traffic at the beginning and end of a workflow. Furthermore,

the aggregator module is not required if the debug-container has no upstream services.



CHAPTER 3. PARIKSHAN 29

P1 

NAT	  

D1 

NAT	  

Clone	  Manager	  

Agent	   Agent	  

To/From Duplicator 

P1 D1 

Clone	  Manager	  

Agent	  

To/From Duplicator 

External Mode Internal Mode 

	  
	  
	  
	  

IP	  namespace	  2	  

	  
	  
	  
	  

IP	  namespace	  1	  

Figure 3.2: External and Internal Mode for live cloning: P1 is the production, and D1 is the debug

container, the clone manager interacts with an agent which has drivers to implement live cloning.

3.2.1 Clone Manager

Live migration [Mirkin et al., 2008; Clark et al., 2005; Gebhart and Bozak, 2009] refers to the process

of moving a running virtual machine or container from one server to another, without disconnecting

any client or process running within the machine (this usually incurs a short or negligible suspend

time). In contrast to live migration where the original container is destroyed, the “Live Cloning”

process used in Parikshan requires both containers to be actively running, and be still attached to

the original network. The challenge here is to manage two containers with the same identities in

the network and application domain. This is important, as the operating system and the application

processes running in it may be configured with IP addresses, which cannot be changed on the fly.

Hence, the same network identifier should map to two separate addresses, and enable communication

with no problems or slowdowns.



30 CHAPTER 3. PARIKSHAN

We now describe two modes (see Figure 3.2) in which cloning has been applied, followed by the

algorithm for live cloning:

• Internal Mode: In this mode, we allocate the production and debug containers to the same

host node. This would mean less suspend time, as the production container can be locally

cloned (instead of streaming over the network). Additionally, it is more cost-effective since the

number of servers remain the same. On the other hand, co-hosting the debug and production

containers could potentially have an adverse effect on the performance of the production

container because of resource contention. Network identities in this mode are managed by

encapsulating each container in separate network namespaces [LWN.net, ]. This allows both

containers to have the same IP address with different interfaces. The duplicator is then able to

communicate to both these containers with no networking conflict.

• External Mode: In this mode we provision an extra server as the host of our debug-container

(this server can host more than one debug-container). While this mechanism can have a higher

overhead in terms of suspend time (dependent on workload) and requires provisioning an extra

host-node, the advantage of this mechanism is that once cloned, the debug-container is totally

separate and will not impact the performance of the production-container. We believe that

external mode will be more practical in comparison to internal mode, as cloning is likely to

be transient, and high network bandwidth between physical hosts can offset the slowdown in

cloning performance. Network identities in external mode are managed using NAT [Srisuresh

and Egevang, 2000] (network address translator) in both host machines. Hence both containers

can have the same address without any conflict.1

Algorithm 1 describes the specific process for cloning some production container P1 from Host

H1 to replica D1 on Host H2.

Step 6 here is the key step which determines the suspend time of cloning. It is important to

understand that the live cloning process before this step does not pause the production container and

1Another additional mode can be Scaled Mode: This can be viewed as a variant of the external mode, where we can

execute debug analysis in parallel on more than one debug-containers each having its own cloned connection. This will

distribute the instrumentation load and allow us to do more analysis concurrently, without overflowing the buffer. We aim

to explore this in the future.
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Algorithm 1 Live cloning algorithm using OpenVZ

1. Safety checks and pre-processing (ssh-copy-id operation for password-less rsync, checking

pre-existing container ID’s, version number etc.)

2. Create and synchronize file system of P1 to D1

3. Set up port forwarding, duplicator, and aggregator

4. Suspend the production container P1

5. Checkpoint & dump the process state of P1

6. Since step 2 and 5 are non-atomic operations, some files may be outdated. A second sync is

run when the container is suspended to ensure P1 and D1 have the same state

7. Resume both production and debug containers

is doing a synch of the file system on the fly. Step 2 ensures that the majority of the pages between

the production machine and the machine containing the debug container, are in synch. The suspend

time of cloning depends on the operations happening within the container between step 2 and step 4

(the first and the second sync), as this will increase the number of dirty pages in the memory, which

in turn will impact the amount of memory that needs to be copied during the suspend phase. This

suspend time can be viewed as an amortized cost in lieu of instrumentation overhead. We evaluate

the performance of live cloning in Section 3.4.1.

3.2.2 Network Proxy Design Description

The network proxy duplicator and aggregator are composed of the following internal components:

• Synchronous Passthrough: The synchronous passthrough is a daemon that takes the input from

a source port, and forwards it to a destination port. The passthrough is used for communication

from the production container out to other components (which is not duplicated).

• Asynchronous Forwarder: The asynchronous forwarder is a daemon that takes the input from a

source port, and forwards it to a destination port, and also to an internal buffer. The forwarding to

the buffer is done in a non-blocking manner, so as to not block the network forwarding.

• Buffer Manager: Manages a FIFO queue for data kept internally in the proxy for the debug-

container. It records the incoming data, and forwards it a destination port.
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• Dummy Reader: This is a standalone daemon, which reads and drops packets from a source port,

or optionally saves them for divergence checking (see section 3.2.4)

3.2.2.1 Proxy Network Duplicator:

To successfully perform online debugging, both production and debug containers must receive the

same input. A major challenge in this process is that the production and debug container may execute

at different speeds (debug will be slower than production): this will result in them being out of

sync. Additionally, we need to accept responses from both servers and drop all the traffic coming

from the debug-container, while still maintaining an active connection with the client. Hence simple

port-mirroring and proxy mechanisms will not work for us.

TCP is a connection-oriented protocol and is designed for stateful delivery and acknowledgment

that each packet has been delivered. Packet sending and receiving are blocking operations, and if

either the sender or the receiver is faster than the other the send/receive operations are automatically

blocked or throttled. This can be viewed as follows: Let us assume that the client was sending packets

at XMbps (link 1), and the production container was receiving/processing packets at YMbps (link

2), where Y < X . Then automatically, the speed of link 1 and link 2 will be throttled to YMbps

per second, i.e the packet sending at the client will be throttled to accommodate the production

server. Network throttling is a default TCP behavior to keep the sender and receiver synchronized.

However, if we also send packets to the debug-container sequentially in link 3 the performance of

the production container will be dependent on the debug-container. If the speed of link 3 is Z Mbps,

where Z < Y , and Z < X , then the speed of link 1, and link 2 will also be throttled to Z Mbps. The

speed of the debug container is likely to be slower than production: this may impact the performance

of the production container.

Our solution is a customized TCP level proxy. This proxy duplicates network traffic to the debug

container while maintaining the TCP session and state with the production container. Since it works

at the TCP/IP layer, the applications are completely oblivious to it. To understand this better let us

look at Figure 3.1: Here each incoming connection is forwarded to both the production container

and the debug container . This is a multi-process job involving 4 parallel processes (P1-P4): In P1,

the asynchronous forwarder sends data from client to the production service, while simultaneously

sending it to the buffer manager in a non-blocking send. This ensures that there is no delay in the flow



CHAPTER 3. PARIKSHAN 33

to the production container because of slow-down in the debug-container. In P2, the pass-through

forwarder reads data from the production and sends it to the client (downstream component). Process

P3, then sends data from Buffer Manager to the debug container, and Process P4 uses a dummy

reader, to read from the production container and drops all the packets

The above strategy allows for non-blocking packet forwarding and enables a key feature of

Parikshan, whereby it avoids slowdowns in the debug-container to impact the production container.

We take the advantage of an in-memory buffer, which can hold requests for the debug-container,

while the production container continues processing as normal. A side-effect of this strategy is that

if the speed of the debug-container is too slow compared to the packet arrival rate in the buffer, it

may eventually lead to an overflow. We call the time taken by a connection before which the buffer

overflows its debug-window. We discuss the implications of the debug window in Section 3.2.3.

3.2.2.2 Proxy Network Aggregator:

The proxy described in Section 3.2.2.1 is used to forward requests from downstream tiers to produc-

tion and debug containers. While the network duplicator duplicates incoming requests, the network

aggregator manages incoming “responses” for requests sent from the debug container. Imagine if you

are trying to debug a mid-tier application container, the proxy network duplicator will replicate all

incoming traffic from the client to both debug and the production container. Both the debug container

and the production, will then try to communicate further to the backend containers. This means

duplicate queries to backend servers (for instance, sending duplicate ‘delete’ messages to MySQL),

thereby leading to an inconsistent state. Nevertheless, to have forward progress the debug-container

must be able to communicate and get responses from upstream servers. The “proxy aggregator”

module stubs the requests from a duplicate debug container by replaying the responses sent to the

production container to the debug-container and dropping all packets sent from it to upstream servers.

As shown in Figure 3.1, when an incoming request comes to the aggregator, it first checks if

the connection is from the production container or debug container. In process P1, the aggregator

forwards the packets to the upstream component using the pass-through forwarder. In P2, the asyn-

chronous forwarder sends the responses from the upstream component to the production container,

and sends the response in a non-blocking manner to the internal queue in the buffer manager. Once

again this ensures no slow-down in the responses sent to the production container. The buffer manager
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then forwards the responses to the debug container (Process P3). Finally, in process P4 a dummy

reader reads all the responses from the debug container and discards them (optionally it can also save

the output for comparison, this is explained further in section 3.2.4).

We assume that the production and the debug container are in the same state, and are sending

the same requests. Hence, sending the corresponding responses from the FIFO queue instead of the

backend ensures: (a) all communications to and from the debug container are isolated from the rest

of the network, (b) the debug container gets a logical response for all it’s outgoing requests, making

forward progress possible, and (c). similar to the proxy duplicator, the communications from the

proxy to internal buffer is non-blocking to ensure no overhead on the production-container.

3.2.3 Debug Window

Parikshan’s asynchronous forwarder uses an internal buffer to ensure that incoming requests proceed

directly to the production container without any delay, regardless of the speed at which the debug

replica processes requests. The incoming request rate to the buffer is dependent on the client, and is

limited by how fast the production container manages the requests (i.e. the production container is

the rate-limiter). The outgoing rate from the buffer is dependent on how fast the debug-container

processes the requests.

Instrumentation overhead in the debug-container can potentially cause an increase in the trans-

action processing times in the debug-container. As the instrumentation overhead increases, the

incoming rate of requests may eventually exceed the transaction processing rate in the debug con-

tainer. If the debug container does not catch up, it can lead to a buffer overflow. We call the time

period until buffer overflow happens the debug-window. The length of the debug-window depends

on the size of the buffer, the incoming request rate, and the overhead induced in the debug-container.

For the duration of the debugging-window, we assume that the debug-container faithfully represents

the production container. Once the buffer has overflown, the debug-container may be out of sync

with the production container. At this stage, the production container needs to be re-cloned, so that

the replica is back in sync with the production and the buffer can be discarded. In case of frequent

buffer-overflows, the buffer size needs to be increased or the instrumentation to be decreased in the

replica, to allow for longer debug-windows.

The debug window size also depends on the application behavior, in particular how it launches
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TCP connections. Parikshan generates a pipe buffer for each TCP connect call, and the number

of pipes are limited to the maximum number of connections allowed in the application. Hence,

buffer overflows happen only if the requests being sent in the same connection overflow the queue.

For webservers, and application servers, the debugging window size is generally not a problem, as

each request is a new “connection.” This enables Parikshan to tolerate significant instrumentation

overhead without a buffer overflow. On the other hand, database and other session based services

usually have small request sizes, but multiple requests can be sent in one session which is initiated by

a user. In such cases, for a server receiving a heavy workload, the number of calls in a single session

may eventually have a cumulative effect and cause overflows.

To further increase the debug window, we propose load balancing debugging instrumentation

overhead across multiple debug-containers, which can each get a duplicate copy of the incoming

data. For instance, debug-container 1 could have 50% of the instrumentation, and the rest on debug-

container 2. We believe such a strategy would significantly reduce the chance of a buffer overflow in

cases where heavy instrumentation is needed. Section 3.4.2 explains in detail the behavior of the

debug window, and how it is impacted by instrumentation.

3.2.4 Divergence Checking

To understand divergence between the production and the debug container, we look at the following

questions:

• Can production and debug container diverge?

Database operations, web-servers, application-servers for most typical scenarios generate the

same output as long as the state of the machine and the input request is the same. Since the

production and debug containers both start from the same state, and have received the same

inputs, they should continue to keep giving the same output. However, it is possible for the

two containers to diverge largely because of the following reasons:

– A non-deterministic bug in the deployed application can cause different execution sched-

ules in the production and debug-container resulting in divergent outputs. If parallelism

is properly handled output should still be deterministic regardless of the execution orders.

However, in case of a concurrency bug, it is possible that the bug is triggered in one of
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the containers and not the other, leading to divergence.

– Another possible source of divergence is internal non-determinism due to timing, or

random number generators. For instance internal system timestamps or random generated

id’s could be included in the output values from an SOA application. However for most

applications, we believe that the semantically relevant output would not be relevant on

internal non-deterministic outputs.

– User instrumentation itself in the debug-container can cause divergence, by either chang-

ing the state or execution ordering etc. We recommend Parikshan users to use instru-

mentation for monitoring purposes alone, and have largely non-invasive instrumentation,

which would not lead to a state change. Most debugging techniques only try and un-

derstand the execution and logic flow by observing/monitoring rather than changing

state. Additionally, service-oriented applications maintain a FIFO ordering for incoming

requests. Hence, transactions are executed in the order they are received. We found this

to be the case in all the services we experimented on.

• Can we measure and monitor divergence?

To understand and capture this divergence, we offer an optional feature2 in Parikshan to

capture and compare the network output of the production-container with the debug-container

received in the proxy. Instead of discarding the network output from the debug container,

we asynchronously take the hash of the output, and compare it to the production containers

corresponding output. This gives us a black-box mechanism to check the fidelity of the replica

based on its communication with external components.

Divergence checking, can be customized for each application, and different fields of the output

can potentially be discarded for comparing the output. Essentially, the degree of acceptable

divergence is dependent on the application behavior, and the operator’s wishes. For example, an

application that includes timestamps in each of its messages (i.e. is expected to have some non-

determinism) could perhaps be expected to have a much higher degree of acceptable divergence

than an application that should normally be returning deterministic results. Developers can use

2It is important to note that this feature is optional, and for better performance the packets can simply be dropped
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domain knowledge to design a better divergence checker depending on what part of the output

“must be” the same.

• How can we manage divergence, so as to continue faithful debugging?

Once the production and debug container have diverged, Parikshan’s debug replica can be

re-synced with the production container to get it back to the same state. This process of

re-syncing can be periodically repeated or triggered when divergence is discovered to make the

debug-container faithfully represent the production execution. We discuss re-synchronization

in further detail in the next section 3.2.5

3.2.5 Re-Synchronization

As described in the last section it is possible for the production and debug containers to diverge.

To manage this divergence, and for the debug-container to faithfully represent the production

application it is necessary to re-synchronize the production container with the debug-container.

Re-synchronization can be optimized by using a COW [contributors, 2017] file system such as

BTRFS [Rodeh et al., 2013], which can track deltas from the initial live clone snapshot. This

optimizes the re-synchronization process, as the only parts of the system snapshot that need to be

checked are the deltas from the last snapshot (we assume the snapshot is a synch point when the

production and debug-containers were live cloned).

This process of re-synchronization can be triggered in three different ways based on operator

requirements:

• Periodically: Periodically check for divergence of the deltas, for the debug-container to have

a high fidelity representation of the production-container. Periodic re-synchronization ensures

higher fidelity, but may lead to un-necessary synchronizations, even though the containers

have the same state.

• Divergent Output: Generally we care about output determinism, and as long as the output of

the two containers do not diverge (see section 3.2.4), there is no need for re-synchronization.

Once the output has diverged, the containers need to be re-synchronized for the debug-container

to represent the production container. To ensure such synchronization, the outputs from both
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containers must be tracked, which puts a recording overhead on the production system in the

proxy.

• Buffer Overflow: To avoid having any overhead for checking divergence in the system output,

we can trigger re-synchronization on buffer overflows. Buffer overflow is an indicator that the

production and debug containers have definitely diverged. The debugging in this scenario is

“optimistic”, as the production and debug containers could have divergent states even before

the overflow. However unlike the other two modes, there is no overhead because of periodic

synchronization, and production output recording.

3.2.6 Implementation

The clone-manager and the live cloning utility are built on top of the user-space container virtu-

alization software OpenVZ [Kolyshkin, 2006]. Parikshan extends VZCTL 4.8 [Furman, 2014]

live migration facility [Mirkin et al., 2008], to provide support for online cloning. To make

live cloning easier and faster, we used OpenVZ’s ploop devices [OpenVZ, ] as the container

disk layout. The network isolation for the production container was done using Linux network

namespaces [LWN.net, ] and NAT [Srisuresh and Egevang, 2000]. While Parikshan is based on

light-weight containers, we believe that Parikshan can easily be applied to heavier-weight, tradi-

tional virtualization software where live migration has been further optimized [Svärd et al., 2015;

Deshpande and Keahey, 2016].

The network proxy duplicator and the network aggregator was implemented in C/C++. The

forwarding in the proxy is done by forking off multiple processes each handling one send/or receive

a connection in a loop from a source port to a destination port. Data from processes handling

communication with the production container, is transferred to those handling communication with

the debug containers using Linux Pipes [Bovet and Cesati, 2005]. Pipe buffer size is a configurable

input based on user-specifications.

3.3 Discussion and Limitations

Through our case studies and evaluation, we concluded that Parikshan can faithfully reproduce

many real bugs in complex applications with no running-overhead. However, there may be several
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threats to the validity of our experiments. For instance, in our case study, the bugs that we selected

to study may not be truly representative of a broad range of different faults. Perhaps, Parikshan’s

low-overhead network record and replay approach is less suitable to some classes of bugs. To

alleviate this concern, we selected bugs that represented a wide range of categories of bugs, and

further, selected bugs that had already been studied in other literature, to alleviate a risk of selection

bias. We further strengthened this studied with a follow-up categorization of 220 bugs in three

real-world applications, finding that most of those bugs were semantic in nature, and very few were

non-deterministic, and hence, having similar characteristics to those 16 that we reproduced. The

following are some underlying limitations and assumptions regarding Parikshan’s applicability:

3.3.1 Non-determinism

Non-determinism can be attributed to three main sources (1) system configuration, (2) application

input, and (3) ordering in concurrent threads. Live cloning of the application state ensures that both

applications are in the same “system-state” and have the same configuration parameters for itself

and all dependencies. Parikshan’s network proxy ensures that all inputs received in the production

container are also forwarded to the debug container. However, any non-determinism from other

sources (e.g. thread interleaving, random numbers, reliance on timing) may limit Parikshan’s ability

to faithfully reproduce an execution. While our current prototype version does not handle these,

we believe there are several existing techniques that can be applied to tackle this problem in the

context of live debugging. However, as can be seen in our case-studies above, unless there is

significant non-determinism, the bugs will still be triggered in the replica, and can hence be debugged.

Approaches like statistical debugging [Liblit, 2004], can be applied to localize bug. Parikshan allows

debugger to do significant tracing of synchronization points, which is often required as an input for

constraint solvers [Flanagan and Godefroid, 2005; Ganai et al., 2011], which can go through all

synchronization orderings to find concurrency errors. We have also tried to alleviate this problem

using our divergence checker (Section 3.2.4)

3.3.2 Distributed Services

Large-scale distributed systems are often comprised of several interacting services such as storage,

NTP, backup services, controllers and resource managers. Parikshan can be used on one or more
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containers and can be used to clone more than one communicating . Based on the nature of the service,

it may be (a). Cloned, (b). Turned off or (c). Allowed without any modification. For example, storage

services supporting a replica need to be cloned or turned off (depending on debugging environment)

as they would propagate changes from the debug container to the production containers. Similarly,

services such as NTP service can be allowed to continue without any cloning as they are broadcast

based systems and the debug container cannot impact it in anyway. Furthermore, instrumentation

inserted in the replica, will not necessarily slowdown all services. For instance, instrumentation in a

MySQL query handler will not slowdown file-sharing or NTP services running in the same container.

3.3.3 Overhead in Parikshan

The key motivation of Parikshan is to remove all potential overheads such that instrumentation in

the debug-container does not impact performance of the production application. We wish to clarify

certain aspects which may lead to questions regarding overheads in the mind of the reader:

• Container virtualization: Based on recent studies, user-space container virtualization give

near native performance [Felter et al., 2015; Xavier et al., 2013]. User-space containers

essentially leverage process level isolation and do not have a full just-in-time virtualization

stack. Since several existing SOA applications are deployed in virtualized cloud environments

(including full virtualization), we believe that there is no additional overhead from Parikshan

as far as container virtualization is concerned

• Network Forwarding: Another potential source of overhead is network forwarding due to

in-memory copy of the data packets being forwarded to the debug-container. To evaluate

(see section 3.4.3.2) the overhead we looked at how network overhead can impact bandwidth

and latency in both raw TCP requests (micro-benchmarks), as well as how it impacted a few

real-world applications (wikibench, and mysql). When compared to SOA applications with

proxies, we found that the impact in both throughput and latency was negligible (max 1-2%).

We also verified that increasing the overhead in the debug container has no impact on

the production service. Given that proxies are used commonly in deployed web/service

level applications, we could clearly demonstrate that duplication does not add any discernible

overhead to production services. Web proxies like squid [Saini, 2011] are commonly used to
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give an order of magnitude performance improvement, and reducing system load by caching

frequently fetched pages and links. Parikshan can easily be coupled with such already existing

web proxies in the system thereby not adding a new network hop by introducing it’s own

proxy.

• Live Cloning: The reader may also be concerned with overhead due to live cloning. Live

cloning involves a small time during which the machine must be suspended, this can impact

the latency of requests. Firstly, it is important to point out that live cloning is a single-time

process (or periodic), and does not impact the general processing of requests in the SOA

application, when we are not trying to sync with the production container. The amortized

cost of this momentary suspend process process on a live running production application is

generally considered acceptable (consider that live migration is used in production systems all

the time).

The current implementation for live cloning shown in this thesis is derived from early work in

live migration in container virtualization of openvz container virtualization [Furman, 2014].

We designed this mostly for the purposes of demonstrating a viable prototype where live

cloning is possible. While live migration is a relatively well researched topic in full virtualized

systems, it is relatively new in container virtualization. Furthermore, network file system

support can tremendously improve cloning time and decrease suspension time. Live migration

is actively used in production systems of several well-known cloud service providers such as

amazon [Amazon, 2010], google compute [Krishnan and Gonzalez, 2015] etc. With further

advancement in live migration technologies in the user-space container virtualization, state-

of-art migration techniques can be modified for live-cloning and can help in the adoption of

Parikshan with much shorter suspend times.

3.4 Evaluation

To evaluate the performance of Parikshan, we pose and answer the following research questions:

• RQ1: How long does it take to create a live clone of a production container and what is it’s

impact on the performance of the production container?
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• RQ2: What is the size of the debugging window, and how does it depend on resource

constraints?

• RQ3: What is the performance overhead of our network duplicator on a service oriented

applications? In particular how does forwarding packets to the debugger impact latency,

bandwidth and throughput of the application? Does slowdown in debug container impact

production service?

We evaluated the internal mode on two identical VM’s with an Intel i7 CPU, with 4 Cores, and

16GB RAM each in the same physical host (one each for production and debug containers). We

evaluated the external mode on two identical host nodes with Intel Core 2 Duo Processor, 8GB of

RAM. All evaluations were performed on CentOS 6.5.

3.4.1 Live Cloning Performance

As explained in Section 3.2, a short suspend time during live cloning is necessary to ensure that both

containers are in the exact same system state. The suspend time during live cloning can be divided in

4 parts: (1) Suspend & Dump: time taken to pause and dump the container, (2) Pcopy after suspend:

time required to complete rsync operation (3) Copy Dump File: time taken to copy an initial dump

file. (4) Undump & Resume: time taken to resume the containers. To evaluate “live cloning”, we ran

a micro-benchmark of I/O operations, and evaluated live-cloning on some real-world applications

running real-workloads.

3.4.1.1 Real world applications and workloads:

To begin to study the overhead of live cloning, we performed an evaluation using five well-known

applications. Figure 3.3 presents the suspended times for five well-known applications when cloning

a replica with Parikshan. We ran the httperf [Mosberger and Jin, 1998a] benchmark on Apache

and thttpd to compute max throughput of the web-servers, by sending a large number of concurrent

requests. Tradebeans and Tradesoap are both part of the dacapo [Blackburn et al., 2006] benchmark

“DayTrader” application. These are realistic workloads, which run on a multi-tier trading application

provided by IBM. PetStore [PetStore, ] is also a well known J2EE reference application. We deployed

PetStore in a 3-tier system with JBoss, MySQL and Apache servers, and cloned the app-server. The
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Figure 3.3: Suspend time for live cloning, when running a representative benchmark

input workload was a random set of transactions which were repeated for the duration of the cloning

process.

As shown in Figure 3.3, for Apache and Thttpd the container suspend time ranged between 2-3

seconds. However, in more memory intensive application servers such as PetStore and DayTrader,

the total suspend time was higher (6-12 seconds). Nevertheless, we did not experience any timeouts

or errors for the requests in the workload3. However, this did slowdown requests in the workload.

This shows that short suspend times are largely not visible or have minimal performance impact

to the user, as they are within the time out range of most applications. Further, a clean network

migration process ensures that connections are not dropped, and are executed successfully. We felt

3In case of packet drops, requests are resent both at the TCP layer, and the application layer. This slows down the

requests for the user, but does not drop them
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that these relatively fast temporary app suspensions were a reasonable price to pay to launch an

otherwise overhead-free debug replica. To further characterize the suspend time imposed by the live

cloning phase of Parikshan, we created a synthetic micro-benchmark to push Parikshan towards its

limit.
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Figure 3.4: Live Cloning suspend time with increasing amounts of I/O operations

3.4.1.2 Micro Benchmark using I/O operations:

The main factor that impacts suspend time is the number of “dirty pages” in the suspend phase, which

have not been copied over in the pre-copy rsync operation (see section 3.2.1). To understand this

better, we use fio (flexible I/O tool for Linux) [Axboe, 2008], to gradually increase the number of I/O

operations while doing live cloning. We run the fio tool to do read and writes of random values with

a controlled I/O bandwidth. Additionally, we ensure that the I/O job being processed by fio is long

enough to last through the cloning process.
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As shown in figure 3.4, read operations have a much smaller impact on suspend time of live

cloning compared to write operations. This can be attributed to the increase of “dirty pages” in write

operations, whereas for read, the disk image remains largely the same. The internal mode is much

faster than the external mode, as both the production and debug-container are hosted in the same

physical device. We believe, that for higher I/O operations, with a large amount of “dirty-pages”,

network bandwidth becomes a bottleneck: leading to longer suspend times. Overall in our experi-

ments, the internal mode is able to manage write operation up to 10 Mbps, with a total suspend-time

of approx 5 seconds. Whereas, the external mode is only able to manage up to 5-6 Mbps, for a 5 sec

suspend time.

3.4.1.3 State-of-the-art live migration techniques

The live-cloning technique presented in this thesis is a prototype system to show a proof-of-

concept implementation based on standard pre-copy live migration provided through the CRIU

project [criulive, ]. Live Migration implementation depends on several factors apart from the algo-

rithm implementation, this includes network-bandwidth, hardware support, file-systems etc. In this

sub-section we discuss the performance of state-of-art techniques in both real-world services and

the academia. This will give us an idea of the performance of live cloning when leveraging ideal

hardware/softwares and network infrastructures.

In particular among enterprise IAAS service providers Google Compute uses live migration for

maintenance purposes, and provides it as a service to it’s users in it’s Google Compute Engine Plat-

form. While it is difficult to find any detailed evaluation studies for these platforms, Google Platform

Engineers have shown that blackout times (live migration suspend time) have steadily decreased

and the median live migration blackout times is now approximately 0.2s (March 2016) [google-

blog, ]. Since Parikshan focuses on SOA applications, we also looked into empirical evidence of

live migration performance on real-world workloads - RightScale a cloud management platform

company tested GCE to see what performance users can expect, and if live migration downgrades

user-experience for SOA applications. The setup included 2 load balancers, 10 php webservers, and

a master/slave pair of mysql. Google engineers were asked to do live migration while a real-world
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Figure 3.5: Reduction in median brownout times in Google Compute Platforms based on recent

improvements till March 2013

workload was simulated on this setup. As per application logs there was no discernable impact of

live migration on the http requests [googleanectodal, ]. As per description from the blog the only

way that the authors came to know about the migration was because Google informed them that the

machines were migrated twice.

Apart from Google Compute, RedHat Enterprise Services also offer zero-downtime seamless live

migration as a service in user-space containers. A youtube demo video demonstrates CRIU being

leveraged to seamlessly transfer a container with a video being streamed [criulive, ], with no impact

on the streaming service. RHEL plans to introduce this live migration as a service to the next docker

engine. Open source IAAS solutions such as OpenStack [openstack, ] (which offers a multitude

of compute hosting alternatives (Xen, KVM, LXC)) also offers live migration depending on the

compute service. Additionally LXD, and OpenVZ (we have used OpenVZ) which are user-space

container services are also introducing live migration as an option. Video streaming, and gaming

which are low latency applications are often considered as the gold-standard for live migration, and

based on several youtube videos current state-of-art live migration demos support both uninterrupted

user-experience when live migration is going on in the background. Studies have shown that live
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migration actual downtime may vary considerably between applications, ranging from as low as

60 ms when migrating a Quake game server [quakegame, ] to up to 3 seconds in case of particular

HPC benchmarks. While streaming and game services show that live migration can provide seamless

low-latency live migration, we could not find production level data for real-world deployments

showing live migration capability at stressed out workloads (the blog from RightScale earlier could

be considered an instance of a real-world workload with live migration, and the same for Google

Compute’s overall down-time statistics).

A relatively older 2009 study [Voorsluys et al., 2009] on the cost of virtual machine live

migration on SLA guarantees of cloud services (web 2.0 services) has shown that in most cases

service availability and responsiveness during live migration is acceptable where it is governed by

strict SLA guarantees. The results showed that in an instance of a nearly oversubscribed system

(serving concurrently 600 users) despite a downtime of nearly 3 seconds the SLA guarantee for

the 90% percentile was met and there was not disruption of service. While a more stringent 99%

percentile SLA can still be met when the workload is slightly less (500 concurrent users). A more

recent piece of work [Lee et al., 2016] shows that significant optimization (upto 98%) can be done

in the performance of live migration for back-and-forth live migration. This is a common use-case

when live migration is used for fault tolerance to turn over to a backup system. Parikshan has a

similar back-forth scenario where the debug container is often updated from the production container

in case of divergence. Essentially, similar optimizations could be used to reduce migration time and

complexity to do live migration after the initial live migration has been performed.

To answer RQ1, live cloning introduces a short suspend time in the production container

dependent on the workload. Write intensive workloads will lead to longer suspend times,

while read intensive workloads will take much less. Suspend times in real workload on

real-world systems vary from 2-3 seconds for webserver workloads to 10-11 seconds for

application/database server workloads. Compared to external mode, internal mode had a

shorter suspend time. A production-quality implementation could reduce suspend time further

by rate-limiting incoming requests in the proxy, or using copy-on-write mechanisms and

faster shared file system/storage devices already available in several existing live migration

solutions.
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3.4.2 Debug Window Size

To understand the size of the debug-window and it’s dependence on resources, we did some experi-

ments on real-world applications, by introducing a delay while duplicating the network input. This

gave us some real-world idea of buffer overflow and it’s relationship to the buffer size and input

workload. Since it was difficult to observe systematic behavior in a live system to understand the

decay rate of the debug-window, we also did some simulation experiments, to see how soon the

buffer would overflow for different input criteria.

Input Rate Debug Window Pipe Size Slowdown

530 bps, 27 rq/s 8 4096 1.8x

530 bps, 27 rq/s 8 sec 4096 3x

530 bps, 27 rq/s 72 sec 16384 3x

Pois., λ = 17 rq/s 16 sec 4096 8x

Pois., λ = 17 rq/s 18 sec 4096 5x

Pois.,λ = 17 rq/s 8 65536 3.2x

Pois.,λ = 17 rq/s 376 sec 16384 3.2x

Table 3.1: Approximate debug window sizes for a MySQL request workload

Experimental Results: We call the time taken to reach a buffer overflow the “debug-window”. As

explained earlier, the size of this debug-window depends on the overhead of the “instrumentation”,

the incoming workload distribution, and the size of the buffer. To evaluate the approximate size

of the debug-window, we sent requests to both a production and debug MySQL container via our

network duplicator. Each workload ran for about 7 minutes (10,000 “select * from table” queries),

with varying request workloads. We also profiled the server, and found that is able to process a max

of 30 req/s4 in a single user connect session. For each of our experiments, we vary the buffer sizes

to get an idea of debug-window. Additionally, we generated a slowdown by first modeling the time

taken by MySQL to process requests (27 req/s or 17req/s), and then putting an approximate sleep in

the request handler.

4Not the same as bandwidth, 30 req/s is the maximum rate of sequential requests MySQL server is able to handle for a

user session



CHAPTER 3. PARIKSHAN 49

Initially, we created a connection and sent requests at 90% of the maximum request rate the

server was able to handle (27 req/s). We found that for overheads up-to 1.8x (approx) we experienced

no buffer overflows. For higher overheads the debug window rapidly decreased, primarily dependent

on buffer-size, request size, and slowdown.

We then sent requests at about 60% of the maximum request rate i.e. average 17 req/s. The

requests were sent at varying intervals using a poisson distribution. This varies the inter-request

arrival time (this is similar to production requests under normal workloads) and let’s the cloned

debug-container catch up with the production container during idle time-periods in between request

bursts. We observed, that compared to earlier experiments, there was more slack in the system. This

meant that our system was able to tolerate a much higher overhead (3.2x) with no buffer overflows.

Our experiments showed that idle time between requests can be used by the debug container

to catch up to the production container. Most production systems run much below the maximum

capacity, this would allow the debug container to catch up to the production container thereby

allowing for long debug windows.

Simulation Results: In our next set of experiments, we simulate packet arrival and service process-

ing for a buffered queue in SOA applications. We use a discrete event simulation based on an MM1

queue, which is a classic queuing model based on Kendall’s notation [Kendall, 1953], and is often

used to model SOA applications with a single buffer based queue. Essentially, we are sending and

processing requests based on a Poisson distribution with a finite buffer capacity. In our simulations

(see Figure 3.6), we kept a constant buffer size of 64GB, and iteratively increased the overhead of

instrumentation, thereby decreasing the service processing time. Each series (set of experiments),

starts with an arrival rate approximately 5 times less than the service processing time. This means that

at 400% overhead, the system would be running at full capacity (for stable systems SOA applications

generally operate at much less than system capacity). Each simulation instance was run for 1000000

seconds or 277.7 hours. We gradually increased the instrumentation by 10% each time, and observed

the hitting-time of the buffer (time it takes for the buffer to overflow for the first time). As shown

there is no buffer overflow in any of the simulations until the overhead reaches around 420-470%,

beyond this the debug-window decreases exponentially. Since beyond 400% overhead, the system is

over-capacity, the queue will start filling up fairly quickly. This clarifies the behavior we observed in

our experiments, where for lower overheads (1.8-3.2x) we did not observe any overflow, but beyond
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Figure 3.6: Simulation results for debug-window size. Each series has a constant arrival rate, and the

buffer is kept at 64GB.

a certain point, we observed that the buffer would overflow fairly quickly. Also as shown in the

system, since the buffer size is significantly larger than the packet arrival rate, it takes some time

for the buffer to overflow (several hours). We believe that while most systems will run significantly

under capacity, large buffer sizes can ensure that our debug-container may be able to handle short

bursts in the workload. However, a system running continuously at capacity is unlikely to tolerate

significant instrumentation overhead.

To answer RQ2, we found that the debug-container can stay in a stable state without any

buffer overflows as long as the instrumentation does not cause the service times to become



CHAPTER 3. PARIKSHAN 51

less than the request arrival rate. Furthermore, a large buffer will allow handling of short

bursts in the workload until the system returns back to a stable state. The debug-window

can allow for a significant slowdown, which means that many existing dynamic analysis

techniques [Flanagan and Godefroid, 2005; Nethercote and Seward, 2007], as well as most

fine-grained tracing [Erlingsson et al., 2012; Kasikci et al., 2015] can be applied on the

debug-container without leading to an incorrect state.

3.4.3 Network Duplication Performance Overhead

As explained in section 3.3.3, a potential overhead in Parikshan is the network level duplication

and forwarding. For each packet received by the duplicator it is copied to the outgoing buffer of

connections to both the production and the debug container. The communication to the production and

the debug container is done in parallel, using non-blocking I/O. This ensures that packet forwarding

to the debug-container has a negligible impact on packet-forwarding to production. Another potential

overhead can be because of the extra-hop introduced by a proxy. This is easily avoided by coupling

our network duplication with existing proxies in the deployed application. Proxies are commonly

used in most SOA applications, for security, and performance purposes [Saini, 2011] (they allow

caching which gives significant performance boosts).

In this section, we have focused on the end-to-end performance overhead of a system running

with the debug container and duplicating the network traffic. For our testing purposes, we have run

each of the experiments in the following three modes :

• Native: In this mode we only run the client and the server without any proxy or any external

network forwarding.

• Proxy Only: In this mode we have a proxy which is forwarding packets from the client to the

server, without any duplication.

• Duplication: Here we have Parikshan’s network duplicator, which is forwarding packets from

the client to the server, as well as to the debug container.

The server and the proxy run on the same physical machine, in each of the the three modes. The
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Figure 3.7: Performance impact on network bandwidth when using network duplication. The above

chart shows network bandwidth performance comparison of native execution, with proxy

client, as well as the debug container are run on a different physical machines to avoid resource

contention. Additionally, all components are in the same local subnet.

We divide our evaluation into two parts, first into micro-benchmarks which focus on raw TCP

level connection performances, such as impact on bandwidth and latency. Next we look at the impact

on two real-world applications - MediaWiki [Barrett, 2008], and MySQL [MySQL, 2001].

3.4.3.1 Micro-benchmark - Bandwidth and Latency

In order to understand the overhead that our duplicator can have on network performance, we look at

how much the network forwarding of TCP packets is impacted by duplication in the proxy. This can

be in two different aspects, firstly throughput (or bandwidth), and secondly latency.

Network Bandwidth: To understand the impact of network duplication on the bandwidth between a

client and a server we run a micro-benchmark using iperf [Tirumala et al., 2005] - a well known tool

for performing network throughput measurements. It can test either TCP or UDP communication

throughput measurements. To perform an iperf test the user must establish both a server (to discard
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traffic) and a client (to generate traffic).

Figure 3.7 shows the bandwidth of native execution compared to that with a proxy forwarding

packets and a duplicator, which also sends packets to the debug container apart from the production

container. The maximum bandwidth which can be supported by the native execution was found

to be 941Mb/s, with a standard deviation of 2Mb/s, the setup with the proxy had no discernible

difference and had the exact same performance over 10 execution runs. When duplicating packets to

the debug container as well, the performance comes down slightly to 938, with a standard deviation

of 3Mb/s. This was an average slowdown of less than 0.5%, when compared to production and debug

containers. We believe this difference in bandwidth is negligible for most practical applications and

will not impact application end-to-end performance.

Network Latency: Network latency is the end-to-end round trip time for the completion of any

request. It is important to maintain the best possible latency, as often SOA applications are user-

facing and any slow-down in latency impacts user-experience. Once again to measure Parikshan’s

duplication’s impact on network latency, we consider the three modes given above: native, proxy

only, and duplication.

We first used httping [Aivazov and Samkharadze, 2012] to measure latency of an http HEAD

request and observe the difference in the performance in all three modes. Unlike GET requests,

HEAD requests leaves the data and only gets the header information of the packet requested. Hence,

it is important to note that we are primarily looking at local network performance for HTTP HEAD

requests, rather than back-end server processing time. Table 3.2 shows the latencies observed for the

three modes in microseconds:

Direct Proxy Duplication

0.5 0.904 0.907

Table 3.2: httping latency in micro-seconds for direct, proxy and duplication modes for HTTP

HEAD requests

As can be seen the latencies observed by the client, when running with only the proxy, compared
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File Size Direct Proxy Duplication Debug Container

1MB 0.015s 0.017s 0.017s 0.0165

10MB – – 0.0168s 0.094s

100MB – – 0.0174s 0.898s

Table 3.3: File download times when increasing file size in the debug-container. Please note the file

size is not increased for the proxy and direct communication. The last column shows the time taken

for downloading the file from the debug container.

to with network duplication were found to be almost equal. The difference in the latencies between

direct and proxy can be attributed to the extra-hop between the proxy and the production container.

Since ping requests do not process any data, we followed up with measurements of page fetch

requests, where we fetched a random 1MB file from a thttpd webserver [Poskanzer, 2000] using the

wget [GNU-OS, 2016] http download tool. In order to measure the impact of slowdown in the debug

container on the latency observed by the client, we kept the file url the same and increased the file

size in the debug container. This emulates a gradual slow-down in the debug-container, and allows

us to observe it’s impact on the client. Table 3.3 shows our results with different file sizes in the

debug container. The first column shows the size of the file being fetched in the debug-container, and

the last column shows the average time taken to download the file. As can be seen the time taken to

download the file, from the debug container gradually increases as the file size is increased. However,

the download time from our duplication proxy, when duplicating the request to the debug container

does not change. This shows that a slow-down in the debug-container does not negatively impact

the client facing latencies. This demostrates Parikshan’s key advantage in avoiding instrumentation

overhead impact on end-users.

3.4.3.2 End-to-end overhead in real-world applications

In this section we look at end-to-end performance, of network duplication when seen in the context

of a real-world application.
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Direct Proxy Duplication
Proxy

Overhead

Duplication

Overhead

0.29702582 0.306969121 0.306230625 3.347 -0.2405

0.061174009 0.06154608 0.062500115 6.08 1.55

0.05342713 0.056767733 0.055644723 6.25 -1.97825

0.054240793 0.054382414 0.054373268 0.261 -0.0168

Table 3.4: Snapshot of the first four latencies of GET/POST requests(secondss) from wikipedia, and

the overhead of proxy compared to direct mode, and duplication over proxy mode

Latency

Figure 3.8: Latencies in all different modes for wikipedia trace

Firstly we re-created a scaled down deployment of Wikipedia [Wikipedia, 2016a], a well known

free online open-source encyclopedia. The wikipedia database and application called mediawiki [Bar-

rett, 2008] is an open-source LAMP (Linux, apache, mysql and PHP stack) application and allows

developers to create their own wiki websites. We leverage wikipedia traces and dumps available

through the wikibench [van Baaren, 2009] database 5 to re-create the wikipedia application and

database in one of our containers. Once the website was created we used a small sample set of

5Please note this database dump does not have most of the wiki images so most of the HTTP requests in our traces,

which are image specific had to be filtered out. Several post requests, which need user log-ins were also filtered out. Hence,

we looked at only the requests from the traces which were successful based on the data snapshot available
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wikipedia HTTP requests traces from 2008, and compared the latency of about 500 HTTP requests

in three modes of deployment as we have explained before : Native, Proxy and Duplication. We then

compared the average change in latencies for each requests.

Table 3.4 gives a snapshot of 4 such URL’s and it’s latencies. The second last column gives

the overhead of proxy compared to direct communication, whereas the second gives the percentage

difference between the duplicate mode as compared to proxy mode. We found that the proxy was

generally slower than the direct connection, the slowdown ranged from 1-8%, more importantly we

found that when comparing the latencies in the duplication mode to our proxy mode, the overhead

was negligible and in most cases was less that 2%. Accounting for some variance because of caching,

we believe the overhead in a realistic system running with a debugging container will have negligible

impact to a similar system running with only a proxy.

Apart from wikipedia traces we also looked into mysql-server. Mysqlslap is a diagnostic program

designed to emulate client load for a MySQL server, and to report the timing of each stage. It works

as if multiple clients are accessing the server. The mysqlslap tool runs several iterations of the queries

over multiple different parallel connections, and gives an average distribution of the response time

for running all queries. The queries and the test database used is a sample employee database initially

provided by Siemens Corporate Research. The database contains about 300,000 employee records

with 2.8 million salary entries. The export data is 167 MB, which is not huge, but heavy enough to

be non-trivial for testing.

We used 5 sample queries, which create 20 concurrent connections, and iterate each of the queries

from each of the concurrent threads in 10 iterations. The mysqlslap reports the average number of

seconds to run all queries. As is shown below in table 3.5, the average amount of time to run all the

queries in each of the three modes was found to have minimal difference between the proxy and the

duplication modes.

To answer RQ3, we first separated the overhead comparisons between that due to duplication,

and that due to an extra-hop because of a proxy. We were able to verify that the performance

in terms of both latency and throughput of the duplicator when compared to a similar

system with only a proxy is nearly the same (<2%). The overhead in terms of latency of

the proxy vs native communication on was less than 8% depending on the size of the request
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Modes mysqlslap

Direct 8.220s

Proxy 8.230s

Duplication 8.232s

Table 3.5: Average time to finish mysqlslap queries on a sample database

and the request processing time in the server. We also verified that slowdown in the debug

container does not have any impact on production service.

3.5 Summary

Parikshan is a novel framework that uses redundant cloud resources to debug production SOA

applications in real-time. Compared to existing monitoring solutions, which have focused on

reducing instrumentation overhead, our tool decouples instrumentation from the production container.

This allows for high level instrumentation, without impacting user experience.

We demonstrated a proof of concept live cloning process, and were able to show that the impact

on network bandwidth was less than 0.5% and for network latency was less than 0.3%. We also

ran Parikshan on some real world workloads on systems like Wikipedia to show it’s real world

applicability.
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Chapter 4

Is network replay enough?

4.1 Overview

Several existing record and replay systems have a high performance overhead as they record events,

at a low level of non-determinism to enable deterministic replay. However, most bugs in service

oriented application do not require such low level of recording. In this chapter, we show that most

bugs found in real-world SOA applications can be triggered by network level replay.

To validate this insight, we selected sixteen real-world bugs, applied Parikshan, reproduced them

in a production container, and observed whether they were also simultaneously reproduced in the

replica. For each of the sixteen bugs that we triggered in the production environments, Parikshan

faithfully reproduced them in the replica.

We selected our bugs from those examined in previous studies [Lu et al., 2005; Yuan et al.,

2014], focusing on bugs that involved performance, resource-leaks, semantics, concurrency, and

configuration. We have further categorized these bugs whether they lead to a crash or not, and if they

can be deterministically reproduced. Table 4.1 presents an overview of our study.

In the rest of this chapter we discuss the bug-reproduction technique in each of these case-studies

in further detail.



60 CHAPTER 4. IS NETWORK REPLAY ENOUGH?

Bug Type Bug ID Application Symptom/Cause
Determ-

inistic
Crash Trigger

Performance

MySQL #15811 mysql-5.0.15 Bug caused due to multiple calls in a loop Yes No Repeated insert into table

MySQL #26527 mysql-5.1.14 Load data is slow in a partitioned table Yes No Create table with partition and load

data

MySQL #49491 mysql-5.1.38 calculation of hash values inefficient Yes No MySql client select requests

Concurrency

Apache #25520 httpd-2.0.4 Per-child buffer management not thread

safe

No No Continuous concurrent requests

Apache #21287

httpd-

2.0.48,

php-4.4.1

Dangling pointer due to atomicity viola-

tion

No Yes Continuous concurrent request

MySQL #644 mysql-4.1 data-race leading to crash No Yes Concurrent select queries

MySQL #169 mysql-3.23 Race condition leading to out-of-order

logging

No No Delete and insert requests

MySQL #791 mysql-4.0 Race - visible in logging No No Concurrent flush log and insert re-

quests

Semantic

Redis #487 redis-2.6.14 Keys* command duplicate or omits keys Yes No Set keys to expire, execute specific

reqs

Cassandra #5225 cassandra-1.5.2 Missing columns from wide row Yes No Fetch columns from cassandra

Cassandra #1837 cassandra-0.7.0 Deleted columns become available after

flush

Yes No Insert, delete, and flush columns

Redis #761 redis-2.6.0 Crash with large integer input Yes Yes Query for input of large integer

Resource Leak
Redis #614 redis-2.6.0 Master + slave, not replicated correctly Yes No Setup replication, push and pop

some elements

Redis #417 redis-2.4.9 Memory leak in master Yes No Concurrent key set requests

Configuration
Redis #957 redis-2.6.11 Slave cannot sync with master Yes No Load a very large DB

HDFS #1904 hdfs-0.23.0 Create a directory in wrong location Yes No Create new directory

Table 4.1: List of real-world production bugs studied with Parikshan

4.2 Applications Targeted

In our case-studies we have targeted the following applications: MySQL, Apache, Redis, Cassandra,

HDFS. Apart from this we have also tried Parikshan on PetStore [PetStore, ] a J2EE JBOSS [Jamae

and Johnson, 2009] multi-tier application. We also did a survey of 220 real-world bugs, and found

them similar to the bugs presented in this case study (more details regarding the survey can be found

at section 4.4). In this section we explain the applications that have been used in the bug case-studies.
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4.2.1 MySQL

MySQL [MySQL, 2001] is a well known open-source database application for structured SQL

queries. MySQL is most commonly deployed as a standalone centralized server, and can also be

deployed as a cluster service with several servers sharing the data. It allows for atomic updates with

strict consistency models, so there is a single point of query, and is usually queried using customized

MYSQL protocol, which is avialable in several mysql libraries or clients in different languages.

Several modern websites and transaction systems are built on MySQL. Other softwares which are

very similar in deployment to MySQL are Oracle DB [Loney, 2004], and PostgrepSQL [Momjian,

2001].

In our examples we have used the native mysql client application provided with the mysql

community server distribution. When using mysql, you can either use an anonymous user, a

registered user or an admin. We have used the default mysql/mysql user or anonymous user to run

our queries.

4.2.2 Apache HTTPD Server

Apache httpd server [Fielding and Kaiser, 1997] is the most well known webservers with millions

of active websites being hosted on it. It responds to HTTTP requests from user-facing browsers,

and sends responses from downstream applications to be rendered back in the browser. Webservers

can run standalone, multi-tier in a load-balanced fashion or can act as proxies for security purposes.

Other softwares which are similar to apache are nginx [Reese, 2008], and thttpd [Poskanzer, 2000]

amongst many others.

Connections to Apache HTTPD servers are made through browsers. For our testing, we have

typically used wget [GNU-OS, 2016] or httpref [Mosberger and Jin, 1998b] command line utilities

to run single or multiple workloads of http queries.

4.2.3 Redis

Redis [Carlson, 2013] is an open-source, in-memory, networked key-value storage service. The name

Redis means Remote Dictionary Server. Redis is often ranked the most popular key-value database,

and has also been ranked the #4 NoSQL database in user satisfaction and market presense based on
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it’s reviews. It is very light-weight and is commonly used in containers. Redis maps keys to types of

values, and can support many abstract data types apart from strings (e.g. lists, sets, hash tables etc.).

It is also often used as a queuing system. Other similar softwares include BerkleyDB [Olson et al.,

1999], and memcached [Fitzpatrick, 2004]

Redis provides bindings for several languages, and has several client libraries available. For our

experiments we have used the redis-cli client given with the default distribution.

4.2.4 Cassandra

Cassandra [Lakshman and Malik, 2010] is a well known wide column store NoSQL database,

designed to handle large amounts of data across many commodity servers, providing high availability

with no single point of failure. Cassandra offers robust support for clusters spanning multiple

datacenters, with asynchronous masterless replication allowing low latency operations for all clients.

Other similar systems include MongoDB [Banker, 2011], HBase [George, 2011] etc.

Installing the correct version of cassandra which has this bug as well as it’s dependencies is a

little tricky. The re-compilation of the version which has the bug is significantly difficult as some

of the dependency libraries are no longer available using simply their Apache IVY build files. We

provide these libraries as a part of our package in github project. We also provide a python script for

the cassandra client to trigger the bug conditions. We use the standard python cassandra client for

our testing.

4.2.5 HDFS

The Hadoop distributed file system (HDFS) [Borthakur, 2008] is a distributed, scalable, and portable

file system written in Java for the Hadoop framework. A Hadoop cluster has nominally a single

namenode plus a cluster of datanodes, although redundancy options are available for the namenode

due to its criticality. Each datanode serves up blocks of data over the network using a block protocol

specific to HDFS. The file system uses TCP/IP sockets for communication. Clients use remote

procedure call (RPC) to communicate between each other. HDFS stores large files (typically in the

range of gigabytes to terabytes[64]) across multiple machines. It achieves reliability by replicating

the data across multiple hosts. Other similar systems include Ceph [Weil et al., 2006], Lustre [Yu et

al., 2007].
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In our implementation we use HDFS binary client which comes pre-packaged with Hadoop. We

deployed a two node cluster with one master and and two slaves. The master as primary name-node,

and one of the slaves as the secondary name-node.

4.3 Case Studies

4.3.1 Semantic Bugs

The majority of the bugs found in production SOA systems can be categorized as semantic bugs.

These bugs often happen because an edge condition was not checked during the development stage

or there was a logical error in the algorithm etc. Many such errors result in an unexpected output

or possibly can crash the system. We recreated 4 real-world production bugs from Redis [Carlson,

2013] queuing system, and Cassandra [Lakshman and Malik, 2010] a NoSQL database.

4.3.1.1 Redis #761

In this subsection we describe the Redis #761 semantic bug

Cause of the error:

The Redis #761 is an integer overflow error. This error is triggered, when the client tries to insert

and store a very large number. This leads to an unmanaged exception, which crashes the production

system. Integer overflow, is a common error in several applications. We classify this as a semantic

bug, which could have been fixed with an error checking condition for large integers.

Steps for reproduction:

1. Start a redis service with log level set to verbose. Setting loglevel to verbose ensures that

we can view whatever is going on inside the service. This is our production container.

2. Create a live clone of the service mapped to a parallel debug container which will be used

to visualize debugging
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3. Start cloning the incoming traffic to both the production container and the debug container

asynchronously using Parikshan’s network duplicator

4. Send the following request through the redis client:

zinterstore out 9223372036854775807 zset zset2

This tries to set the variable to the integer in the request, and leads to an integer overflow

error. The integer overflow error is simultaneously triggered both in the production and the

debug containers. Since this is a crashing bug, both the production and debug containers

crash once the bug is triggered.

How to debug with Parikshan

Debugging such a bug could be done by having recording or logging turned on for record and

replay infrastructures in the debug container before the bug happened (or at all times). This debugging

scenario is described further in Staged Record and Replay (see section 6.4.3). This would remove

any instrumentation overhead from the production container, and the bug would be triggered both in

the debug and production container leading to a crash. Replaying the recorded logs will significantly

reduce the amount of time to fix this bug.

Advantage

The key advantage here is that the instrumentation overhead of record-and-replay can be avoided

using staged recording.

Alternative mechanisms without Parikshan

Without Parikshan, the bug could be debugged using a record-replay on the production system

itself, which would add overhead and impact user-experience (depends on instrumentation overhead).

Alternatively, debuggers could find the root-cause by analyzing the integer overflow exception to find

the root-cause of the bug, which along with trial and error could potentially help in fixing the error.

4.3.1.2 Redis #487

In this subsection we describe the Redis #487 semantic bug
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Cause of the error:

Redis #487 is a bug reported by the user where expired keys were still being retained in Redis, despite

them being deleted by the user. The error is a semantic bug because of an unchecked edge condition.

While this error does not lead to any exception or any error report in application logs, it gives the user

a wrong output. In the case of such logical errors, the application keeps processing, but the internal

state can stay incorrect. The bug impacts only clients who set keys, and then expire them.

Steps for reproduction:

1. Start a redis service with log level set to verbose. Setting loglevel to verbose ensures that

we can view whatever is going on inside the service. This is our production container.

2. Create a live clone of the service mapped to a parallel debug container which will be used

to visualize debugging

3. Start cloning the incoming traffic to both the production container and the debug container

asynchronously using Parikshan’s network duplicator

4. flush all keys using flushall command

5. set multiple keys using set key value command

6. expire a key from one of them using expire s 5 command

7. run the keys * command. This will list keys which should have expired

At the end it can be seen that the expired keys can be listed and accessed in both the production

and debug container. This is a persistent error, which does not impact most other aspects of the

service. The debug container can be used to look at the transactional logs, and have further instru-

mentation to understand the root cause of the error.

How to debug with Parikshan

Redis #487 can be debugged using Parikshan, by either using a proactive staged record and

replay, where recording has already been turned on for the container . Alternatively, Parikshan can

also be useful for a post-facto analysis of the bug (analyzing the bug in debug container after it has

been triggered). Since the machine is still running but not crashed yet, a debugger could reason about
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the machine by running more flush/expire key queries (they do not need to be queries being sent by

the user), and instrument and get the path of execution in the codebase. This can help quickly isolate

the error. Since the running state has been ”cloned”, and the bug itself is persistent it gives a quick

mechanism to debug the error.

Advantage

For proactive approach, Parikshan helps to avoid instrumentation overhead imposed by monitor-

ing for a record-replay system. On the other hand for post-facto approach, the main advantage of

Parikshan is that it gives a quick debug environment which clones the original system state.

Alternative mechanisms without Parikshan

Under normal circumstances the user would have to re-create the application state in a test-

environment where this bug could be re-created based on transaction logs (or better yet, a snapshot

of the VM could be taken and re-started offline in a way similar to live cloning). The disadvantage

would be that there would be valuable time lost in re-creating this environment, a feature automated

in Parikshan.

4.3.1.3 Cassandra #5225

In this subsection we describe the Cassandra #5225 semantic bug

Cause of the error:

This error happens when a user requests columns from an extremely wide row. The output of the

query, has missing columns when requesting specific columns. The data is still in the table, just that

it might not be returned to the user. Taking closer look, Cassandra is reading from the wrong column

index. A problem was found with the index checking algorithm, whereby the order in which data

was being read to be indexed had some unhandled edge cases

Steps for reproduction:



CHAPTER 4. IS NETWORK REPLAY ENOUGH? 67

1. Start a cassandra service in the production container

2. Use Parikshan’s live cloning facility to create a clone of cassandra in the debug-container.

3. Connect to cassandra using a python client

4. Insert a large number of columns into cassandra (so that it is a wide row). For our testing

we used pycassa python cassandra client. The following code shows column insertion.

if need_to_populate:

print "inserting ..."

for i in range(100000):

cols = dict((str(i * 100 + j), ’value%d’ % (i * 100 +

j)) for j in range(100))

CF1.insert(’key’, cols)

if i % 1000 == 0:

print "%d%%" % int(100 * float(i) / 100000)

5. Fetch the columns in a portion of ranges.The following is an example code

for i in range(1000):

cols = [str(randint(0, 99999)) for i in range(3)]

expected = len ( set( cols ) )

results = CF1.get(’key’, cols)

if len(results) != expected:

print "Requested %s, only got %s" % (cols,

results.keys())

6. At the end of this test case you can observe that some columns were dropped in the response

to the client.

How to debug with Parikshan

This is a tricky bug to re-create as the bug is triggered by an edge condition when a large number

of columns are inserted. The error can be ideally found by doing post-facto analysis of the live

clone by first capturing incoming requests, and their responses in the debug container once the error

has been reported. An initial understanding of the kind of requests which are failing, can lead to

debuggers issuing their own requests, and tracing the execution through the application (using a
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debugger, or heavy instrumentation). This will help localize the bug.

Advantage

Similar to previous bugs, post-facto analysis can be easily done by re-creating the state of the

machine and tracing incoming requests to see which kind of requests are failing. The debug container

also provides a safe environment to debug (execute requests etc) to find execution traces and localize

the problem.

Alternative mechanisms without Parikshan

Since this bug is dependent on the system state it’s difficult to know what led to certain queries

failing. Alternative mechanisms would require taking a snapshot, and then running queries which

were reported to have failed.

4.3.1.4 Cassandra #1837

In this subsection we describe the Cassandra #1837 semantic bug

Cause of the error:

The main symptom of this error was that deleted columns become available again after doing a

flush. With some domain knowledge, a developer found the error. This happens because of a bug

in the way deleted rows are not properly interpreted once they leave the memory table (memtable).

Hence, the flush operation does not correctly delete the data. Thus querying for the data after the

operation continues to shows content even after deletion.

Steps for reproduction:

1. Start a cassandra service in the production container

2. Use Parikshan’s live cloning facility to create a clone of cassandra in the debug-container.

3. Using cassandra’s command line client, insert columns into cassandra without flushing

4. delete the inserted column
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5. flush the columns so that the deletion should be committed

6. query for the columns in the table

7. observe that the columns have not been deleted and are retained.

Once again we have provide dockerized containers for Cassandra, as well as execution scripts for

the client.

How to debug with Parikshan

Similar to previous semantic bugs, staged record-and-replay or a post-facto analysis can be used

to find out the root-cause. One of the advantages of this bug is that once the system state is reached

all future flush requests result in the same behavior. Hence, an execution trace on subsequent flush

queries executed in the debug container can help in finding the root-cause (i.e. that the delete query

has not properly marked the columns for deletion).

Advantage

Post-facto analysis can be easily done by re-creating the state of the machine and tracing in-

coming requests to see which kind of requests are failing. The debug container also provides a safe

environment to debug (execute requests etc) to find execution traces and localize the problem.

Alternative mechanisms without Parikshan

Alternative mechanisms would require either a record-replay system, or taking a snapshot, and

then running queries which were reported to have failed.

4.3.1.5 Summary

Broadly, the major advantage that Parikshan provides in most semantic bugs is two-fold:

• Firstly it provides a mechanism to do staged-record and replay thereby removing the overhead

of a normal record-replay system from the production environment.

• For post-facto analysis (starting the debug container after the bug was observed), it allows the

debugger to observe incoming requests, dig deeper into the system state and run execution
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trace/ system debugger on suspect queries. This adhoc trial and error process may help in

localizing the root cause much faster.

It can be argued that the advantage in some sense is limited in semantic bugs, as staged record-

replay has a cost of an extra machine (as well as potentially re-cloning).

4.3.2 Performance Bugs

These bugs do not lead to crashes but cause significant impact to user satisfaction. A casestudy [Jin

et al., 2012] showed that a large percentage of real-world performance bugs can be attributed to

uncoordinated functions, executing functions that can be skipped, and inefficient synchronization

among threads (for example locks held for too long etc.). Typically, such bugs can be caught by

function level execution tracing and tracking the time taken in each execution function. Another key

insight provided in [Jin et al., 2012] was that two-thirds of the bugs manifested themselves when

special input conditions were met, or execution was done at scale. Hence, it is difficult to capture

these bugs with traditional offline white-box testing mechanisms.

4.3.2.1 MySQL #26527

In this subsection we describe the MySQL #26527 performance bug

Cause of the error:

This error has to do with a caching problem for large inserts where large amount of data in a

partitioned table. It was reported that inserting data with LOAD DATA INFILE is very slow with

partitioned table and sometimes crawls to a stop. The reason behind the error was found to be that

MySQL uses a handler function to prepare caches for large inserts. As high availability partitioner

didn’t allow these caches for underlaying tables, the inserts were much slower.

Steps for reproduction:
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1. Start an instance of the MySQL server in the production container

2. Using Parikshan’s live cloning capability create a clone of the production container. This is

our debug container

3. Start network duplicator to duplicate network traffic to both the production and debug

containers

4. connect to the production container using mysqlclient

5. using mysql-client run the following query

CREATE TABLE t1 (

f1 int(10) unsigned NOT NULL DEFAULT ’0’,

f2 int(10) unsigned DEFAULT NULL,

f3 char(33) CHARACTER SET latin1 NOT NULL DEFAULT ’’,

f4 char(15) DEFAULT NULL,

f5 datetime NOT NULL DEFAULT ’0000-00-00 00:00:00’,

f6 char(40) CHARACTER SET latin1 DEFAULT NULL,

f7 text CHARACTER SET latin1,

KEY f1_idx (f1),

KEY f5_idx (f5)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

6. Inserting 64 GB of data takes more than 1 day with this setup. This can be observed with

both production and debug containers running in sync, hence the slow performance can be

also monitored in the debug container.

How to debug with Parikshan

While technically, this is a performance bug, MySQL bug #26527 happens for an edge condition

where a large amount of data is being uploaded to the database. This is an unusual query and the

future queries in the system are unlikely to be impacted by this particular bug. Since only edge

cases are impacted, Parikshan’s main advantage would be in providing either a staged record-replay

or a post-facto analysis of the system state, where the problem query can be re-run (given that the

debugger has some idea of under what circumstances the slow-down was observed).

Advantage
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The major advantage in this scenario is that Parikshan can provide a safe debugging environment

for performance profiling of queries or alternatively a staged record-replay with no instrumentation

overhead on production.

Alternative mechanisms without Parikshan

Since the bug is quite difficult to re-create unless a record replay system has been running, this

bug is likely to be debugged based on trial and error, and using user bug reports as the initial guide.

4.3.2.2 MySQL #49491

In this subsection we describe the MySQL #49491 performance bug

Cause of the error:

It was reported that the calculation of MD5 and SHA1 hash values using the built-in MySQL

functions does not seem to be as efficient, and takes too long.There seem to be two factors that

determine the performance of the hash generation:

• computation of the actual hash value (binary value)

• conversion of the binary value into a string field

The run time of the hash computation depends on the length of the input string whereas the

overhead of the binary-to-string conversion can be considered as a fixed constant as it will always

operate on hash values of 16 (MD5) or 20 (SHA1) bytes length. The impact of the binary-to-string

conversion will become more visible with shorter input strings than with long input strings. For short

input strings it seems that more time is spent in the binary-to-string conversion than in the actual

hash computation part.1

Steps for reproduction:

1A patch provided by a developer improved the performance by an order of magnitude. However for the purposes of

our discussion, we have limited ourselves to bug-recreation
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1. Start an instance of the MySQL server in the production container

2. Using Parikshan’s live cloning capability create a clone of the production container. This is

our debug container

3. Start network duplicator to duplicate network traffic to both the production and debug

containers

4. connect to the production container using mysqlclient

5. Run a select query from the client on the users database:

select count(\*) from (select md5(firstname) from users) sub

limit 1G

6. The time observed for this query is reported as a performance bug by the reporter. This can

be viewed both in the production container and the debug container

How to debug with Parikshan

Parikshan is significantly helpful in debugging this bug. Since the bug is a persistent performance

problem, Parikshan’s debug container can be used to do performance profiling and to find which

queries are problematic. A significant percentage of the incoming user-input could potentially be im-

pacted by the hash computation, thereby impacting performance. Performance profiles at functional

granularity in a post-facto analysis can significantly reduce the amount of effort spent in debugging

this error.

Advantage

Post-facto analysis in such performance bugs which are persistent and impact a significant

percentage of incoming queries are easily debugged using performance profiling.

Alternative mechanisms without Parikshan

Without Parikshan the debugger is limited to use bug reports to recreate the bug in an offline

environment (this could be tricky). Alternatively performance profiling could be turned on in the

production container to capture the root-cause which would impact application performance.
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4.3.2.3 MySQL #15811

In this subsection we describe the MySQL #15811 performance bug

Cause of the error:

For one of the bugs in MySQL #15811, it was reported that some of the user requests which

were dealing with complex scripts (Chinese, Japanese), were running significantly slower than

others. To evaluate Parikshan, we re-created a two-tier client-server setup with the server (container)

running a buggy MySQL server and sent queries to the production container with complex scripts

(Chinese). These queries were asynchronously replicated, in the debug container. To further inves-

tigate the bug-diagnosis process, we also turned on execution tracing in the debug container using

SystemTap [Prasad et al., 2005]. This gives us the added advantage, of being able to profile and iden-

tify the functions responsible for the slow-down, without the tracing having any impact on production.

Steps for reproduction:

1. Start an instance of the MySQL server in the production container

2. Using Parikshan’s live cloning capability create a clone of the production container. This is

our debug container

3. Start network duplicator to duplicate network traffic to both the production and debug

containers

4. connect to the production container using mysqlclient

5. Create a table with default charset as latin1:

create table t1(c1 char(10)) engine=myisam default

charset=latin1;

6. Repeat the following line several times to generate a large dataset

insert into t1 select * from t1;
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7. Now create a mysqldump of the table

8. Load this table back again, and observe a significant slow response for large table insert

requests. This is magnified several times when using complex scripts

How to debug with Parikshan

This is a persistent stateless bug, similar to the bug shown earlier MySQL#15811 and impacts a

significant percentage of queries. Based on user bug reports it can be observed that only queries of

complex character sets have a slowdown. In a post-facto analysis of the bug, execution traces (func-

tion level profiling) of mysql for incoming queries can help in localizing the error to the root-cause

function.

Advantage

Parikshan provides a significant advantage in quickly resolving and finding the root-cause of

the error by providing an easy and quick cloned debug environment where incoming queries can be

observed.

Alternative mechanisms without Parikshan

Without Parikshan the debugger would have to record incoming queries and have instrumentation

turned on in the production container adding an unnecessary overhead. Alternatively, the debugger

would have to use a trial and error to recreate the problem in an offline debug environment based on

user-bug reports.

4.3.2.4 Summary

In summary for performance bugs Parikshan can be immensely useful especially in the sub-categories

of performance bugs which are persistent in nature (i.e. keep impacting future queries), and a

significant percentage of the incoming queries are likely to be impacted. In this scenario, the

debugger can look into the root-cause by doing function level profiling or execution tracing and find

the root-cause. This will be a post-facto analysis, and will potentially be much faster than creating a

debug environment where the bug is re-created.
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4.3.3 Resource Leaks

Resource leaks can be either memory leak or un-necessary zombie processes. Memory leaks are

common errors in service-oriented systems, especially in C/C++ based applications which allow

low-level memory management by users. These leaks build up over time and can cause slowdowns

because of resource shortage, or crash the system. Debugging leaks can be done either using

systematic debugging tools like Valgrind, which use shadow memory to track all objects, or memory

profiling tools like VisualVM, mTrace, or PIN, which track allocations, de-allocations, and heap size.

Although Valgrind is more complete, it has a very high overhead and needs to capture the execution

from the beginning to the end (i.e., needs application restart). On the other hand, profiling tools are

much lighter and can be dynamically patched to a running process.

4.3.3.1 Redis #417

In this subsection we describe the Redis #417 resource leak bug

Cause of the error:

It was reported that when two or more databases are replicated, and atleast one of them is

>=db10, a resource leak was being observed. This was because the replication feed for the slaves

created static connection objects which are allocated and freed when replication is being done from

db (0-9). However, for database ID values greater than 10, the objects are dynamically created and

never freed. This was leaving stale memory and leading to a memory leak in redis. Although the bug

is visible in the verbose logs, it is difficult to pick out the root-cause of the bug.

Steps for reproduction:

1. Start a redis service with log level set to verbose. Setting loglevel to verbose ensures that

we can view whatever is going on inside the service. This is our production container.

2. Also start a slave along with the master for a two node redis deployment

3. Create a live clone of the service mapped to a parallel debug container which will be used
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to visualize debugging

4. Start cloning the incoming traffic to both the production container and the debug container

asynchronously using Parikshan’s network duplicator

5. Execute the following commands concurrently from the redis-client

redis-cli -r 1000000 set foo bar

redis-cli -n 15 -r 1000000 set foo bar

6. After the two sets, check the master debug container, you can observe the tremendous

increase of memory usage - this shows the memory leak.

How to debug with Parikshan

This is a two-node setup where we run the production container with a slave for replication, and

a memory profile of the system shows a memory leak. The bug happens in a particular state of the

machine when the redis database has is doing replication. Given that we already have the state of the

database where the bug is happening, in a post-facto analysis the resource leak can be observed in a

memory profile and an execution trace can help localize the error.

Advantage

One of the major advantages of Parikshan in this scenario is that it can replicate part of a two

node cluster, without having to create a distributed test bed. Secondly since the bug is a slow memory

leak, it will not lead to an immediate out-of-memory error. This allows the debugger to use Parikshan

after the bug was triggered/reported, and find the root-cause using execution tracing or memory

profiling of functions in the debug container.

The overhead of memory profiling could potentially be high, but since the bug impacts most

incoming requests, overflowing the debug window should not be a problem as long as we can capture

some representative execution traces.

Alternative mechanisms without Parikshan

In an alternative scenario, a debugger would have to create a distributed environment and use

trial-and-error based on user bug reports to localize the error.
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4.3.3.2 Redis #614

In this subsection we describe the Redis #614 resource leak bug

Cause of the error:

The debugger reported replication bug while attempting to use Redis as a reliable queue with

a Lua script pushing multiple elements onto the queue. It appears the wrong number of RPOP

operations are sent to the slave instance, resulting in the queue on the slave growing unbounded, out

of sync with master.

Steps for reproduction:

1. Start a redis service with log level set to verbose. Setting loglevel to verbose ensures that

we can view whatever is going on inside the service. This is our production container.

2. Also start a slave along with the master for a two node redis deployment

3. Create a live clone of the service mapped to a parallel debug container which will be used

to visualize debugging

4. Start cloning the incoming traffic to both the production container and the debug container

asynchronously using Parikshan’s network duplicator

5. Send data via the producer, the following ruby code is an example

def run

puts "Starting producer"

loop do

puts "Inserting 4 elements..."

@redis.eval(@script, :keys => [’queue’])

sleep 1

end

end

6. Data is consumed via a consumer, the following ruby code is an example
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def run

puts "Starting consumer #{@worker_id}"

@redis.del(@worker_id)

loop do

element = @redis.brpoplpush(’queue’, @worker_id)

puts "Got element: #{element}"

@redis.lrem(@worker_id, 0, element)

end

end

7. The verbose log in both the production container and the debug container shows an increas-

ing memory footprint

[3672] 01 Sep 21:39:59.596 - 1 clients connected (0 slaves),

557152 bytes in use

[3672] 01 Sep 21:40:04.642 - DB 8: 1 keys (0 volatile) in 4

slots HT.

[3672] 01 Sep 21:40:04.642 - 1 clients connected (0 slaves),

557312 bytes in use

[3672] 01 Sep 21:40:09.687 - DB 8: 1 keys (0 volatile) in 4

slots HT.

[3672] 01 Sep 21:40:09.687 - 1 clients connected (0 slaves),

557472 bytes in use

How to debug with Parikshan

Debugging this particular bug will require to create a clone of both the production and the

debug container (simply cloning the production container may be enough as well), and looking

at a growing memory profile in isolation. This bug is a slow growing memory leak that happens

because of a bug in the blocking queue which is a part of the replication logic. Any update operations

in the master container will lead to the bug being triggered and memory profile increasing in the

master. Once the bug is reported the debugger can generate the cloned environment, and do execu-

tion tracing of incoming requests. This will help the debugger localize the issue in the function profile.
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Advantage

The advantage in debugging this bug with Parikshan is that it provides the debugger a fast

mechanism to localize the error.

Alternative mechanisms without Parikshan

Without Parikshan debuggers need to look up the bug reports, and try to recreate the error. This

would be a trial and error mechanism, which could take considerably longer than localizing it with

Parikshan.

4.3.3.3 Summary

Similar to performance bugs, Parikshan provides a significant advantage in resolving resource leaks

especially slowly growing resource leaks. Debuggers can look at function level profile, and execution

traces to localize the error. Furthermore, a debugger like gdb can be attached to do a step by step

execution to find the error interactively.

4.3.4 Concurrency Bugs

One of the most subtle bugs in production systems are caused due to concurrency errors. These bugs

are hard to reproduce, as they are non-deterministic, and may or may not happen in a given execution.

Unfortunately, Parikshan cannot guarantee that if a buggy execution is triggered in the production

container, an identical execution will trigger the same error in the debug container. However, given

that the debug container is a live-clone of the production container, and that it replicates the state of

the production container entirely, we believe that the chances of the bug also being triggered in the

debug container are quite high. Additionally, the debug container is a useful tracing utility to track

thread lock and unlock sequences, to get an idea of the concurrency bug. The bugs here are taken

from the bugbench database [Lu et al., 2005]

4.3.4.1 Apache #25520

In this subsection we describe the Apache #25520 concurrency bug
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Cause of the error:

It was reported that when logs are configured to have buffering turned on, the log lines show up

as corrupted, when serving at a very high volume using the worker mpm. The problem appears to

be that the per-child buffer management is not thread-safe. There is nothing to prevent memcopy

operations in buffered log writers by different threads from overlapping.

Steps for reproduction:

1. Install an httpd service in the production container( install it with configuration –with-

mpm=worker - this will set apache in multi-thread instead of multi-process mode).

2. Configure httpd with conf/httpd.conf having:

BufferdLogs on

and subsequently start the httpd service in the production container

3. Create a live clone of the service mapped to a parallel debug container which will be used

to visualize debugging

4. Start cloning the incoming traffic to both the production container and the debug container

asynchronously using Parikshan’s network duplicator

5. Send concurrent requests from the client as follows:

./httperf --server=<your-httpd-server-name>

--uri=/index.html.cz.iso8859-2 --num-conns=100

--num-calls=100

./httperf --server=<your-httpd-server-name>

--uri=/index.html.en --num-conns=100 --num-calls=100

6. If this bug manifests itself, it can be seen in the access logs. Access logs get corrupted,

and multiple logs are thrown out in the same line or they overwrite each other making no

semantic sense and having bad formatting. In our experiments, we were able to see the

anomaly in both production container and debug container simultaneously most of the time.
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It should be noted that in this bug, it is not important that the same order should trigger this

datarace condition. Simply the presence of a datarace(visible through log corruption) is enough to

indicate the error, and can be a starting point for the debugger in the debug container. This is a bug

that is persistent in the system and does not cause a crash.

4.3.4.2 Apache #21287

In this subsection we describe the Apache #21287 concurrency bug

Cause of the error:

It was reported that there are no mutex lock protection in a reference pointer cleanup operation.

This leads to an atomicity violation which can cause a dangling pointer and lead to an apache crash.

Steps for reproduction:

1. Install an httpd service in the production container with the following options - (mpm-worker,

enabled caching, enabled mem caching)

2. Configure and install php service with your httpd server in the production container

3. Create a live clone of the service mapped to a parallel debug container which will be used

to visualize debugging

4. Start cloning the incoming traffic to both the production container and the debug container

asynchronously using Parikshan’s network duplicator

5. Run multiple httperf commands concurrently in the client

./httperf --server=<your-httpd-server-name>

--uri=/pippo.php?variable=1111 --num-conns=1000

--num-calls=1000

6. If the bug manifests, you will observe a crash within 10 seconds of sending the message. In

our experiments we were able to observe this bug in multiple execution in both production

container and debug container simultaneously.
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4.3.4.3 MySQL #644

In this subsection we describe the MySQL #644 concurrency bug

Cause of the error:

This bug is caused by one thread’s write-read access pair interleaved by another thread’s write

access. As a result, the read access mistakenly gets an wrong value and leads to program misbehavior.

We used a sqlreplay utility provided in bugbench to recreate this bug. It eventually leads to a system

crash

Steps for reproduction:

1. Start an instance of the MySQL server in the production container

2. Using Parikshan’s live cloning capability create a clone of the production container. This is

our debug container

3. Start network duplicator to duplicate network traffic to both the production and debug

containers

4. connect to the production container using runtran provided in the bugbench database

./runtran --repeat --seed 65323445 --database test --trace

populate_db.txt --monitor pinot --thread 9 --host

localhost 30 360 1 results

5. If the error happens it leads to a system crash

4.3.4.4 MySQL #169

In this subsection we describe the MySQL #169 concurrency bug

Cause of the error:

It was reported that the Writing to binlog was not a transactional operation and there was a data-race.

This leads to binlog showing that operations happen in a different order than how they were actually
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executed

Steps for reproduction:

1. Start an instance of the MySQL server in the production container

2. Using Parikshan’s live cloning capability create a clone of the production container. This is

our debug container

3. Start network duplicator to duplicate network traffic to both the production and debug

containers

4. connect to the production container using mysqlclient

suppose we have a table named ’b’ with schema: (id int) in database ’test’. Run the following

requests:

./mysql -u root -D test -e ’delete from b’ &

./mysql -u root -D test -e ’insert into b values (1)’ &

5. You will see detection log entry and the insert log entry is out of order in the binlog index.

4.3.4.5 MySQL #791

In this subsection we describe the MySQL #791 concurrency bug

Cause of the error:

This bug is caused by one thread’s write-write access pair interleaved by another thread’s read

access. As a result, the read access mistakenly gets an intermediate value and leads to program

misbehavior.

Steps for reproduction:

1. Start an instance of the MySQL server in the production container

2. Using Parikshan’s live cloning capability create a clone of the production container. This is

our debug container
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3. Start network duplicator to duplicate network traffic to both the production and debug

containers

4. connect to the production container using mysqlclient

./mysql -u root -e ’flush logs’;

./mysql -u root -D test -e ’insert into atab values(11)’;

If the bug is triggered you will observe that the insert is NOT recorded in mysql bin log.

How to debug concurrency bugs with Parikshan Concurrency bugs are non-deterministic in

nature, hence Parikshan cannot guarantee that if a bug is observed in the production system it will

be observed in the replica (or vice-versa). A way to overcome this is to use a staged record-replay

mechanism (described in further detail in section 6.4.3). Once a bug has been reported the staged

recording can be replayed and several third-party tools can be used to check through all possible

thread interleavings in order to search for the bug.

“Search” through thread interleavings during replay phase to find the correct thread schedule

which triggered the concurrency bug is a common technique used by existing replay tools. In one

of our previous papers [Ganai et al., 2011] we have used DPOR (dynamic partial order reduction)

to search through possible interleavings in TCP communication syscall records. Please see section

6.4.3 for more details regarding staged record replay.

4.3.5 Configuration Bugs

Configuration errors are usually caused by wrongly configured parameters, i.e., they are not bugs in

the application, but bugs in the input (configuration). These bugs usually get triggered at scale or for

certain edge cases, making them extremely difficult to catch.

4.3.5.1 Redis #957

In this subsection we describe the Redis #957 configuration bug

Cause of the error:
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A user reported an error, which eventually turned out to be misconfiguration error on his part. The

client in Redis is scheduled to be closed ASAP for overcoming of output buffer limits in the masters

log file. Essentially, it happens the DB is configured to be larger than the client-output-buffer-limit.

The connection with the slave times out and it’s unable to sync because of the large data. While

the bug is partially a semantic bug, as it could potentially have checks and balances in the code.

The root cause itself is a lower output buffer limit. Once again, it can be easily observed in our

debug-containers that the slave is not synced, and can be investigated further by the debugger.

Steps for reproduction:

1. Start a redis service with log level set to verbose. Setting loglevel to verbose ensures that

we can view whatever is going on inside the service. This is our production container.

2. configure redis using :

client-output-buffer-limit slave 256mb 64mb 60

3. Create a live clone of the service mapped to a parallel debug container which will be used

to visualize debugging

4. Start cloning the incoming traffic to both the production container and the debug container

asynchronously using Parikshan’s network duplicator

5. Load a very large DB into master

You will observe that the connection to the slave is lost on syncing

How to debug with Parikshan

For the configuration error described above Parikshan can only be useful if used for staged

record-replay before the bug is triggered on the production container. The main reason for this is that

once the bug is itself triggered the connection to the slave is lost, and it’s a fatal error - i.e. future

progress may be halted.

Advantage

Using staged record-replay may assist in localizing the cause of the error, and at the same time

there will be no overhead on the production service.

Alternative mechanisms without Parikshan
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Potentially, record-replay infrastructures could be used to catch the execution trace of the bug,

and replay it offline. When replaying the error causing execution trace, the debugger can look into

function level profiles and see where the crash is happening. Capturing execution traces will add an

overhead on the production service which can be avoided via Parikshan.

4.3.5.2 HDFS #1904

In this subsection we describe the HDFS #1904 configuration bug

Cause of the error:

This is sort of a semantic and configuration bug both. It was reported that HDFS crashes if a

mkdir command is given through the client in a non-existent folder.

Steps for reproduction:

1. Install hadoop and configure secondary namenode with fs.checkpoint.period set to a small

value (eg 3 seconds)

2. Format filesystem and start HDFS

3. Create a live clone of the service mapped to a parallel debug container which will be used

to visualize debugging

4. Start cloning the incoming traffic to both the production container and the debug container

asynchronously using Parikshan’s network duplicator

5. Run the following command through the client

hadoop fs -mkdir /foo/bar;

sleep 5 ;

echo | hadoop fs -put - /foo/bar/baz

Secondary Name Node will crash with the following trace on the next checkpoint. The

primary NN also crashes on next restart

ERROR namenode.SecondaryNameNode: Throwable Exception in

doCheckpoint:
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ERROR namenode.SecondaryNameNode: java.lang.NullPointerException:

Panic: parent does not exist

How to debug with Parikshan

While Parikshan could be useful for this bug, however this configuration bug happens right at the

startup for simple makefile/makedir commands, following up with a crash of the system. A staged

record-replay on Parikshan can help to recreate the namenode and capture the error offline.

Alternative mechanisms without Parikshan

Simply getting the configuration and recreating the debug environment will easily allow the

debugger to understand the bug.

4.3.5.3 Summary

Parikshan can be useful for configuration bugs depending on the nature of the bug. However,

alternate mechanisms apart from Parikshan where the bug is simply triggered by re-using the

same configuration file might also help localize the bug as well thereby reducing the advantage of

livedebugging.

4.4 A survey of real-world bugs

Category Apache MySQL HDFS

Performance 3 10 6

Semantic 37 73 63

Concurrency 3 7 6

Resource Leak 5 6 1

Total 48 96 76

Table 4.2: Survey and classification of bugs

In the last section we have presented 16 concrete bugs as case-studies for Parikshan, which

demonstrate how Parikshan can be used in various circumstances. In order to further understand
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Parikshan’s applicability for bugs found in Service Oriented Architecture, we did a survey of bug

reports from three well known SOA applications - Apache, MySQL and HDFS.

Since all three applications are open-source softwares, the bug reports are done by system

administrators facing problems and reporting them to bug tracking repositories maintained by each

of the applications. Typically bug reports contain a brief descriptions of the symptoms of the bug,

a description of the system in which it has been installed (Linux version etc.), as well as the input

required to re-create the bug. This follows a discussion using “comments” by both the bug reporter

and developers of the application who try to re-create the bug or assist in some way by giving

directions to resolve the bug. If the reported error requires a fix in the software a patch will be made

and attached to the bug report.

Bug Classifications: We have classified these bugs into the following categories: Performance,

Semantic, Concurrency, and Resource Leak based on the bug-report description, and the patch fix,

to-do action item for the bug. Further sub-categorization of apache bugs has been explained in the

appendix B.0.1, along with a list of all the apache bugs used for this survey, their ID, a summary

description and categorization. In appendix B.0.2 we provide a detailed list of all mysql bugs, and a

short table with further subcategorization of all the bugs used in this survey. Subcategories in the

appendix include - Uncategorized, skipped bugs, Documentation, Feature Requests, Build Issues,

Fault Tolerance, Recovery etc.

Classification Process and Bug Reports: At a high level, we have filtered out all bugs which

belonged to non-production components - like documentation, installation failure, compilation failure.

Then, we manually went through each of the bug-reports, filtering out the ones which were mislabeled

or were reported based on code-analysis, or did not have a triggering test report (essentially we

focused only on bugs that happened during production scenarios). Furthermore, any bug description

which could not be clearly categorized was also filtered out.

To understand how bug reports are described, let us look at Apache bug 46268 report as an

example. Figure 4.1 shows the bug description for bug report, and is divided in two different aspects:

first meta data which explains the status of the bug, the specific component of the application that

this bug appears in, the version and potentially the hardware or operating system on which the bug

was observed.

The second part of the bug report (see figure 4.2) has a bug description and comment section.
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Figure 4.1: Metadata description for a Apache semantic bug

Here is the initial description by the user who observed the bug, and potentially ways to recreate

the error and the symptoms of the bug. In this example the user explains that he had difficulty in

making the regex library to work, in later comments it was explained that this was indeed a bug

in the packaging and a different library should have been used and was fixed in later versions. We

have primarily manually looked into these bug descriptions to categorize whether this is a semantic,

concurrency, performance, or resource leak bug. For cases where this information was not clear or

properly explained we have skipped the bug entirely.

As another example, next we discuss a performance bug in mysql. Figure 4.3 shows the meta

data information in the bug report. This gives the title of the bug, when the report was submitted,

name of the reporter, severity, status and version of MySQL that this bug impacts. As can be seen

from the meta-data itself, the severity is S5(Performance). Which itself indicates that the reporter

believes this to be a performance bug (please note not all performance bugs are labelled so in the

meta-data itself). Based on the subject it seems like there is a slow down related to memcached

requests.

However, a more detailed explanation of the bug is provided in the bug description section (see
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Figure 4.2: Description for a Apache semantic bug based on user report and comments

Figure 4.3: Metadata for a performance bug in MySQL

figure 4.4) where the reporter describes the symptoms, and gives a step-by-step process on how

to repeat the bug, along with a suggested fix. The bug is caused by repeating create and free calls

for each request, which is expensive. Since mysql clients share transaction objects across multiple

queries, the reporter believes this should be supported in InnoDB -memcached plugin as well. A

comparison between memchached-get vs select shows a bad performance overall from memcached.

In the follow up comments it was shown that the request was accepted and the performance bug was

fixed for this plugin.

As can be seen in the previous bug, it is possible to think of this bug as a feature request since the

system is actually working. This is a subjective analysis and really depends on how you want to look

at your bug classification. For our bug classification, we have classified performance improvements

as performance bugs (as is reported in bugzilla), and semantic changes where a new feature is being
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Figure 4.4: Description for a performance bug

suggested as a feature request instead of a semantic bug. All such feature requests have been filtered

out and are not considered in this study.

In apache approximately, 38% of bugs were skipped, and about 14% could not be categorized.

Around 8% were feature requests, and another 8% were bugs that actually required documentation

updates. Approximately 7% were related to build issues. In MySQL we selected 102 bugs from 450

bug cases about 60% of those which were discarded were not focused on the main component, and

we took a random selection of bugs from the rest. In MySQL we found two new categories related to

fault tolerance and replication (2% each).

One of the core-insights provided by this survey was that amongst the bugs falling into our

4 major categories most bugs (93%) triggered in production systems are deterministic in nature

(everything but concurrency bugs), among which the most common ones are semantic bugs (80%).

This is understandable, as they usually happen because of unexpected scenarios or edge cases, that

were not thought of during testing. Recreation of these bugs depend only on the state of the machine,

the running environment (other components connected when this bug was triggered), and network
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input requests, which trigger the bug scenario. Parikshan is a useful testing tool for testing these

deterministic bugs in an exact clone of the production state, with replicated network input. The

execution can then be traced at a much higher granularity than what would be allowed in production

containers, to find the root cause of the bug.

On the other hand, concurrency errors, which are non-deterministic in nature make up for less

than 7% of the production bugs. Owing to non-determinism, it is possible that the same execution is

not triggered. However concurrent points can still be monitored and a post-facto search of different

executions can be done to find the bug [Flanagan and Godefroid, 2005; Thomson and Donaldson,

2015] to capture these non-deterministic errors. This process is further described in the section on

staged record and replay (see section 6.4.3).

To answer RQ3, we found that almost 80% of bugs were semantic in nature, a significant

percentage of these (approx 30-40%) were persistent bugs while less than 6% of the bugs are

non-deterministic. About 13-14% of bugs are performance and resource-leak bugs, which are

also generally persistent in the system.

4.5 Summary

In chapter 4 we demonstrated that network replay is enough to trigger real-world SOA bugs. We

first presented 16 real-life bug cases from 5 different categories of bugs: Semantic, Performance,

Resource Leaks, Concurrency, and Configuration Bugs. These bugs spanned several well known

open-source softwares. For each of these bugs, we presented it’s symptoms and how they were

re-created using parikshan’s network duplication. Further we also presented a survey of 220 bugs

from 3 well known applications, where we manually classify the bugs in these systems to the above

given categories. The bugs discussed in this chapter are a representative of real world bugs for SOA

applications. Based on the sample of bugs and a study of similar bugs found from well known SOA

applications, we believe that network duplication is enough to capture most bugs, and trigger them

in Parikshan’s debug container. A significant percentage of both semantic and most performance

bugs are persistent in nature, which make them easier to debug in the debug container. While in
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this chapter, we have primarily shown that real-world bugs can indeed be triggered in the debug

container, the actual process of debugging of several of these bugs is discussed in further detail last

chapter 6 of this thesis.
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Part II

iProbe: An intelligent compiler

assisted dynamic instrumentation tool
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Chapter 5

iProbe

5.1 Introduction

As explained in section 1, our initial investigation towards low-overhead on-the-fly debugging

involved investigating instrumentation strategies which would allow us to dynamically instrument

the application, with the least possible overhead. Intuitively the least possible overhead of any

instrumentation in an application is possible when it was already a part of the source-code, and

not added as an after-thought when required for instrumentation. However, source-code level

instrumentation is “always on” and has an overhead all the time on the application. Hence, our goal

was to have a production system tracing tool with zero-overhead when it is not activated and the least

possible overhead when it is activated (ideally source code level instrumentation should have the

least overhead as it would not have any overhead inserted by the tool itself). At the same time, it

should be flexible enough so as to meet versatile instrumentation needs at run-time for management

tasks such as trouble-shooting or performance analysis.

Over the years researchers have proposed many tools to assist in application performance

analytics [Luk et al., 2005; Stallman et al., 2002; McDougall et al., 2006; Prasad et al., 2005;

Desnoyers and Dagenais, 2006; McGrath, 2009; Linux Manual Ptrace, ; Buck and Hollingsworth,

2000]. While these techniques provide flexibility, and deep granularity in instrumenting applications,

they often trade in considerable complexity in system design, implementation and overhead to

profile the application. For example, binary instrumentation tools like Intel’s PIN Instrumentation

tool [Luk et al., 2005], DynInst [Buck and Hollingsworth, 2000] and GNU debugger [Stallman et al.,
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2002] allow complete blackbox analysis and instrumentation but incur a heavy overhead, which is

unacceptable in production systems. Inherently, these tools have been developed for the development

environment, hence are not meant for a production system tracer. Production system tracers such

as DTrace [McDougall et al., 2006] and SystemTap [Prasad et al., 2005] allow for low overhead

kernel function tracing. These tools are optimized for inserting hooks in kernel function/system

calls, and can monitor run-time application behavior over long time periods. However, they have

limited instrumentation capabilities for user-space instrumentation, and incur a high overhead due to

frequent kernel context-switches and complex trampoline mechanisms.

Software developers often utilize program print statements, write their own loggers, or use tools

like log4j [Gupta, 2003] or log4c [Goater, 2015] to track the execution of their applications. Those

manually instrumented probe points can easily be deployed without additional libraries or kernel

support, and have a low overhead to run without impacting the application performance noticeably.

However, they are inflexible and can only be turned on/off at compile-time or before starting the

execution. Besides, usually only a small subset of functions is chosen to avoid larger overheads.

While the rest of the thesis talks about Parikshan, which decouples instrumentation from the

production service, in this chapter, we will introduce iProbe our initial foray into developing a light-

weight dynamic instrumentation tool. We evaluated iProbe on micro-benchmark and SPEC CPU

2006 benchmarks, where it showed an order of magnitude performance improvement in comparison

to SystemTap [McGrath, 2009] and DynInst [Buck and Hollingsworth, 2000] in terms of tracing

overhead and scalability. Additionally, the instrumented applications incur negligible overhead when

iProbe is not activated.

The main idea in iProbe design is a two-stage process of run-time instrumentation called

offline and and online stages, which avoids several complexities faced by current state-of-the-

art mechanisms [McDougall et al., 2006; Prasad et al., 2005; Buck and Hollingsworth, 2000;

Luk et al., 2005] such as instruction overwriting, complex trampoline mechanisms, and code

segment memory allocation, kernel context switches etc. Most existing dynamic instrumentation

mechanisms rely on a trampoline based design, and generally have to make several jumps to get to

the instrumentation function as they not only do instrumentation but also simulate the instructions

that have been overwritten. Additionally, they have frequent context-switches as they use kernel

traps to capture instrumentation points, and execute the instrumentation. The performance penalty
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imposed by these designs are unacceptable in a production environment.

Our design avoids any transitions to the kernel which generally causes higher overheads, and is

completely in user space. iProbe can be imagined as a framework which provides a seamless transition

from an instrumented binary to a non-instrumented binary. We use a hybrid 2-step mechanism which

offloads dynamic instrumentation complexities to an offline development stage, thereby giving us a

much better performance. The following are the 2 stages of iProbe:

• ColdPatch: We first prepare the target executable by introducing dummy instructions as

“place-holders” for hooks during the development stage of the application. This can be done

in 3 different ways: Primarily, we can leverage compiler based instrumentation to introduce

our “place-holders”. Secondly we can allow users to insert macros for calls to instrumentation

functions which can be turned on and off at run-time. Lastly we can use static binary rewriter

to insert place-holders in the binary without any recompilation. iProbe uses binary parsers

to capture all place-holders in the development stage and generates a meta-data file with all

possible probe points created in the binary.

• HotPatch: We then leverage these place-holders during the execution of the process to safely

replace them with calls to our instrumentation functions during run-time. iProbe uses existing

tools, ptrace [Linux Manual Ptrace, ], to modify the code segment of a running process, and

does safety check to ensure correctness of the executing process. Using this approach in a

systematic manner we reduce the overhead of iProbe while at the same time maintaining a

relatively simple design.

In iProbe, we propose a new paradigm in development and packaging of applications, wherein

developers can insert probe points in an application by using compiler flag options, and applying our

ColdPatch. An iProbe-ready application can then be packaged along with the meta-data information

and deployed in the production environment. iProbe has negligible effect on the application’s

performance when instrumentation is not activated, and low overhead when instrumentation is

activated. We believe this is an useful feature as it requires minimal developer effort, and allows

for low overhead production-stage tracing which can be switched on and off as required. This is

desirable in long-running services for both debugging and profiling usages.

iProbe can be used individually as a stand-alone tool for instrumentation purposes, which
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can assist debuggers in capturing execution traces from production service oriented applications.

Alternatively, it can also be used to complement Parikshan in the debug container to help us debug

applications as a useful instrumentation utility. MySQL bug#15811 presented in section 4.3.2.3 is an

example of a bug, debugged using iProbe in Parikshan’s debug container.

As an application of iProbe we also demonstrate a hardware event profiling tool (called FPerf ).

In FPerf we leverage iProbe’s flexibility and scalability to realize a fine-grained performance event

profiling solution with overhead control. In the evaluation, FPerf was able to obtain function-level

hardware event breakdown on SPEC CPU2006 applications while controlling performance overhead

(under 5%).

As explained in section 1, despite the advancements made in iProbe, it still cannot scale

out in order to provide high granularity of instrumentation with low-overhead. Essentially, like

all other instrumentation and monitoring tools iProbe’s performance overhead is also directly

proportional to the amount of instrumentation (instrumentation points, how frequently they are

triggered), the user puts in the target software. This core limitation in iProbe led to the development

of Parikshan, which decouples the user-facing production service from the instrumentation put by

the user. In particular for SOA applications, this allows higher level granularity at a low cost and

almost negligible impact to the end-user.

The rest of the chapter is organized as following. Section 5.2 discusses the design of iProbe

framework, explaining our ColdPatching, and HotPatching techniques; we also discuss how safety

checks are enforced by iProbe to ensure correctness, and some extended options in iProbe for further

flexibility. Section 5.3 compares traditional trampoline based approaches with our hybrid approach

and discusses why we perform, and scale better. Section 5.4 explains the implementation of iProbe,

and describes FPerf a tool developed using iProbe framework. In section 5.7 we evaluate the iProbe

prototype, and section 5.8 summarizes this chapter.

5.2 Design

In this section we present the design of iProbe. Additionally, we then explain some safety checks

imposed by iProbe that ensure the correctness of our instrumentation scheme. Finally, we discuss

extended iProbe modes, static binary rewriting and user written macros, which serve as alternatives
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Figure 5.1: The Process of ColdPatching.

to the default compiler-based scheme to insert instrumentation in the pre-processing stage of iProbe.

The first phase of our instrumentation is an offline pre-processing stage to make the binaries

ready for runtime instrumentation. We call this phase ColdPatching. The second phase is the an

online HotPatching stage which instruments the monitored program dynamically at runtime without

shutting down and restarting the program. Next, we present the details of each phase.

5.2.1 ColdPatching Phase

ColdPatching is a pre-processing phase which generates the place-holders for hooks to be replaced

with the calls for instrumentation. This operation is performed offline before any execution by

statically patching the binary file. This phase is composed of three internal steps that are demonstrated

in Figure 5.1.

• Firstly, iProbe uses compiler techniques to insert instrumentation calls at the beginning and

end of each function call. The instrumentation parameters, are decided on the basis of the

design of the compiler pass. The current implementation by default passes callsite information

and the base stack pointer as they can be used to inspect and form execution traces. Calls to the

these instrumentation functions must be cdecl calls so that stack correctness can be maintained,

this is discussed in further detail in Section 5.6.

• Secondly, iProbe parses the executable and replaces all instrumentation calls with a NOP
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Figure 5.2: Native Binary, the State Transition of ColdPatching and HotPatching.

instruction which is a no-operation or null instruction. This generates instructions in the binary

which does no-operation, hence has a negligible overhead, and acts as an empty space for

iProbe to be overwritten at run-time.

• Thirdly, iProbe parses the binary and gathers meta-data regarding all the target instrumentation

points into a probe-list. Optionally, iProbe can strip away all debug and symbolic information

in the binary making it more secure and light-weight. The probe-list is securely transferred to

the run-time interface of iProbe and used to probe the instrumentation points. Hence iProbe

does not have to rely on debug information at run-time to HotPatch the binaries.

5.2.2 HotPatching Phase

Once the application binary has been statically patched (i.e., ColdPatched), instrumentation can be

applied at runtime. Compared to existing trampoline approaches, iProbe does not overwrite any

instructions in the original program, or allocate additional memory when patching the binaries, and

still ensures reliability. In order to have a low overhead, and minimal intrusion of the binary, iProbe

avoids most of the complexities involved in HotPatching such as allocation of extra memory in the

code segment or scanning code segments to find instrumentation targets in an offline stage. The

process of HotPatching is as follows:
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• Firstly, iProbe loads the relevant instrumentation functions in a shared library to the code-

segment of the target process. This along with allocation of NOPs in the ColdPatching phase

allows iProbe to avoid allocation of memory for instrumentation in the code segment.

• The probe-list generated in the ColdPatching phase is given to our run-time environment as a

list of target probe points in the executable. iProbe can handle stripped binaries due to previous

knowledge of the target instructions in the ColdPatching.

• As shown in Figure 5.3, in our instrumentation stage, our HotPatcher attaches itself to the

target process and issues an interrupt (time T1). It then performs a reliability check (see

Section 5.6), and subsequently replaces the NOP instructions in each of the target functions,

with a call to our instrumentation function. This is a key step which enables iProbe to avoid

the complexity of traditional trampoline [UKAI, ; Bratus et al., 2010] by not overwriting any

logical instructions (non-NOP) in the original code. Since the place-holders (NOP instructions)
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are already available, iProbe can seamlessly patch these applications without changing the size

or the runtime footprint of the process. Once the calls have been added iProbe releases the

interrupt and let normal execution proceed (time T2).

• At the un-instrumentation stage the same process is repeated, with the exception that the target

functions are again replaced with a NOP instruction. The period between time T2 and time T3

is our monitoring period, wherein all events are logged to a user-space shared memory logger.

State Transition Flow: Figure 5.2 demonstrates the operational flow of iProbe in the example

to instrument the entry and exit of the func foo function. The left most figure represents the

instructions of a native binary. As an example, it shows three instructions (i.e., push, pop, inc) in the

prolog and one instruction (i.e., pop) in the epilog of the function func foo. The next figure shows

the layout of this binary when it is compiled with the instrumentation option. As shown in the figure,

two function calls, foo begin and foo end are automatically inserted by the compiler at the start

and end of the function respectively. iProbe exploits these two newly introduced instructions as the

place-holders for HotPatching. The ColdPatching process overwrites two call instructions with NOPs.

At runtime, the instrumentation of func foo is initiated by HotPatching those instructions with the

call instructions to the instrumentation functions: begin instrument and end instrument.

This is illustrated in the right most figure in Figure 5.2.

Logging Functions and Monitoring Dispatchers : The calls from the target function to the

instrumentation function are generally defined in the coldpatch stage by the compiler. However,

iProbe also provides monitoring dispatchers which are common instrumentation functions that are

shared by target functions. Our default instrumentation passes the call site information, and the

function address of the target function as parameters to the dispatchers. Each monitoring event can

be differentiated by these dispatchers using a quick hashing mechanism representing the source of

each dispatch. This allows iProbe to uniquely define instrumentation for each function at run-time,

and identify its call sites.

5.2.3 Extended iProbe Mode

As iProbe ColdPatching requires compiler assistance, it is unable to operate on pre-packaged binary

applications. Additionally, compiler flags generally have limited instrumentation flexibility as they
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generally operate on a programming language abstraction(eg. function calls, loops etc.). To provide

further flexibility, iProbe provides a couple of extended options for ColdPatching of the application

5.2.3.1 Static Binary Rewriting Mode

In this mode we use a static binary rewriter to insert instrumentation in a pre-packaged binary.

Once all functions are instrumented, we use a ColdPatching script to capture all call sites to the

instrumentation functions and convert them to NOP instruction. While this mode allows us to directly

operate on binaries, a downside is that our current static binary instrumentation technique also uses

mini-trampoline mechanisms. As explained in Section 5.3 static binary rewriters use trampoline

based mechanisms which induces minimum two jumps. In the ColdPatch phase, we convert calls

to the instrumentation function to NOPs, however the jmp operations to the trampoline function,

and simulation of the overwritten instructions still remain. The downside of this approach has a

small overhead even when instrumentation is turned off. However, in comparison to pure dynamic

instrumentation approach it reduces the time spent in HotPatching. This is especially important if

the number of instrumentation targets is high, and the target binary is large, as it will increase the

time taken in analyzing the binaries. Additionally, if compiler options cannot be changed for certain

sections of the program (plugins/3rd party binaries), iProbe can still be applied using this extended

feature.

Our current implementation uses the dyninst [Buck and Hollingsworth, 2000] and cobi [Mussler

et al., 2011] to do static instrumentation. This allows us to provide the user a configuration file and

template which can be used to specify the level of instrumentation (e.g., all entry and exit points

for instrumentation), or names of specific target functions, and the instrumentation to be applied to

them. Subsequently in ColdPatch we generate our meta-data list, and use it to HotPatch and apply

instrumentation at run-time.

5.2.3.2 Developer Driven Macros

Compiler assisted instrumentation may not provide complete flexibility (usually works on abstrac-

tions, such as enter/exit of functions), hence for further flexibility, iProbe provides the user with a

header file with calls to macros which can be used to add probe points in the binary. A call to this

macro can be placed as required by the developer. The symbol name of the macro is then used in
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the ColdPatch stage to capture these macros as probe points, and convert them to NOPs. Since the

macros are predefined, they can be safely inserted and interpreted by ColdPatcher. The HotPatching

mechanism is very much the same, using the probe list generated by ColdPatch.

5.3 Trampoline vs. Hybrid Approach

foo(){

jmp();

}

jmp(){

….foo fix…

foo_instr();

}

foo_instr(){

}

Trap Handler

(in kernel)

Trampoline Function

Figure 5.4: Traditional Trampoline based Dynamic Instrumentation Mechanisms.

In this section we compare the advantages of our approach compared to traditional trampoline

based dynamic instrumentation mechanisms. We show the steps followed in trampoline mechanisms,

and why our approach has a significant improvement in terms of overhead. The basic process of

dynamic instrumentation based on trampoline can be divided into 4 steps

• Inspection for Probe Points: This step inspects and generates a binary patch for the custom

instrumentation to be inserted to the target binaries, and find the target probe points which are

the code addresses to be modified.

• Memory Allocation for Patching: Appropriate memory space is allocated for adding the

patch and the trampoline code to the target binary.
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• Loading and Activation of a Patch: At run-time the patch is loaded into the target binary, and

overwrites the probe point with a jump instruction to a trampoline function and subsequently

to the instrumentation function.

• Safety and Reliability Check: To avoid illegal instructions, it is necessary to check for safety

and reliability at the HotPatch stage, and that the logic and correctness of the previous binary

remains.

One of the key reasons for better performance of iProbe as compared to traditional trampoline

based designs is the avoidance of multiple jumps enforced in the trampoline mechanism. For instance,

Figure 5.4 shows the traditional trampoline mechanism used in existing dynamic instrumentation

techniques. To insert a hook for the function foo(), dynamic instrumentation tools overwrite target

probe point instructions with a jump to a small trampoline function (jmp()). Note that the overwrit-

ten code by jmp should be executed somewhere to ensure the correctness of the original program.

The trampoline function executes the overwritten instructions (foo fix) before executing the

actual code to be inserted. Then this trampoline function in turn makes the call to the instrumentation

function (foo instr). Each call instruction can potentially lead to branch mispredictions in the

code cache and cause high overhead. Additionally tools like DTrace, and SystemTap [McDougall et

al., 2006; Prasad et al., 2005] have the logger in the kernel space, and cause a context switch in the

trampoline using interrupt mechanisms.

In comparison iProbe has a NOP instruction which can be easily overwritten without resulting in

any illegal instructions, and since overwriting is not a problem trampoline function is not required.

This makes the instrumentation process simple resulting in only a single call instruction at all times.

In addition pure binary instrumentation mechanisms need to provide complex guarantees of

safety and reliability and hence may lead to further overhead. Since the patch and trampoline

functions overwrite instructions at run-time correctness check must be made at HotPatch time so

that an instruction overwrite does not result in an illegal instruction, and that the instructions being

patched are not currently being executed. While this does not enforce a run-time overhead it does

enforce a considerable overhead at the HotPatch stage.

Again iProbe avoids this overhead by offloading this process to the compiler stage, and allocating

memory ahead of time.
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Another important advantage of our hybrid approach as compared to the trampoline approach is

that pure dynamic instrumentation techniques are sometimes unable to capture functions from the

raw binary. This can often be because some compiler optimizations may inherently hide function

calls boundaries in the binary. A common example of this is inline functions where functions are

inlined to avoid the creation of a stack frame and concrete calls to these functions. This may be

done explicitly by the user by defining the function as inline or implicitly by the compiler. Since

our instrumentation uses compiler assisted binary tracing, we are able to use the users definition of

functions in the source code to capture entry and exit of functions despite such optimizations.

5.4 Implementation

The design of iProbe is generic and platform agnostic, and works on native binary executables.

We built a prototype on Linux which is a commonly used platform for service environments. In

particular, we used a compiler technique based gcc/g++ compiler to implement the hook place holders

on standard Linux 32 bit and 64 bit architectures. In this section we first show the implementation of

the iProbe framework, and then discuss the implementation of FPerf a tool built using iProbe.

5.4.1 iProbe Framework

As we presented in the previous section, the instrumentation procedure consists of two stages.

ColdPatch: In the first phase the place holders for hooks are created in the target binary. We

implemented this by compiling binaries using the -finstrument-functions flag. Note that

this can be done simply by appending this flag to the list of compiler flags (e.g., CFLAG, CCFLAG,

CXXFLAGS) and most of cases it works without interfering with user code.

In details this compiler option places function calls to instrumentation functions after the entry

and before the exit of every function. This includes inline functions (see second state in Figure

5.2). Subsequently, our ColdPatcher uses a binary parser to read through all the target binaries, and

search and replace the instruction offsets containing the instrumentation calls with NOP instructions

(instruction 90). Symbolic and debug information is read from the target binary using commonly

available objdmp tools; This information combined with target instruction offsets are used to

generate the probe list with the following information:
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<Instr Offset, Entry\Exit Point, Meta-Data>

The first field is the instruction offset from the base address, and the second classifies if the target is

an entry or an exit point of the function. The meta-data here specifies the file, function name, line

number etc.

HotPatching: In the run-time phase, we first use the library interposition technique, LD PRELOAD,

to preload the instrumentation functions in the form of a shared library to the execution environment.

The HotPatcher then uses a command line interface which interacts with the user and provides the

user an option to input the target process and the probe list. Next, iProbe collects the base addresses

of each shared library and the binary connected to the target process from /proc/pid/maps. The

load address and offsets from the probe-list are then used to generate a hash of all possible probing

points. iProbe then use the meta-data information to provide users a list of target functions and

their respective file information. It takes as input the list of targets and interrupts the target process.

We then use ptrace functionality to patch the target instructions with calls to our instrumentation

functions, and release the process to execute as normal. The instrumentation from each function is

registered and logged by a shared memory logger. To avoid any locking overhead, we have a race free

mechanism which utilizes thread local storage to keep all logs, and a buffered logging mechanism.

5.5 FPerf: An iProbe Application for Hardware Event Profiling

We used iProbe to build FPerf, an automatic function level hardware event profiler. FPerf uses iProbe

to provide an automated way to gather hardware performance information at application function

granularity.

Hardware counters provide low-overhead access to a wealth of detailed performance information

related to CPU’s functional units, caches and main memory etc. Using iProbe’s all function profiling,

we capture the hardware performance counters at the entry and exit of each function. To control the

perturbation on applications and the run-time system, FPerf also implements a control mechanism to

constraint the function profiling overhead within a budget configured by users.

Figure 5.5 summarizes FPerf implementation. It includes a control daemon and an iProbe shared

library with customized instrumentation functions. The iProbe instrumentation functions access

hardware performance counters (using PAPI[Mucci et al., 1999] in the implementation) at the entry
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Figure 5.5: Overview of FPerf : Hardware Event Profiler based on iProbe.

and exit of a selected target function to get the number of hardware events occurring during the

function call. We define this process as taking one sample. Each selected function has a budget

quota. After taking one sample, the instrumentation functions decrease the quota for that application

function by one. When its quota reaches zero, iProbe does not take sample anymore for that function.

The daemon process controls run-time iProbe profiling through shared memory communication.

There are two shared data structures for this purpose: a shared control block where the daemon

process passes to the iProbe instrumentation functions the profiling quota information, and a shared

data table where the iProbe instrumentation functions record the hardware event information for

individual function calls. When iProbe is enabled, i.e., the binary is HotPatched, daemon periodically

collects execution data. We limit the total number of samples we want to collect in each time interval

to restrict the overhead. This limitation is important because in software execution, the function call

happens very frequently. For example, even with test data size input, the SPEC benchmarks generate

50MB-2GB trace files if we log the records for each function call. Functions that are frequently

called will get more samples. Each selected function cannot take more samples than its assigned
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quota. The only exception happens when one function has never been called before; we assign a

minimum one sample quota for each selection function. And we pick a function with quota that has

not been used up, and decrease the quota of it by one. The above overhead control algorithm is a

simplified Leaky Bucket algorithm [Tanenbaum, 2003] originally for traffic shaping in networks.

Other overhead control algorithms are also under consideration.

The control daemon also enables/disables the iProbe HotPatching based on user-defined applica-

tion monitoring rules. Essentially, this is an external control role on when and what to trace a target

application with iProbe. A full discussion of the hardware event selection scheme and monitoring

rule design is beyond the scope of this document.

5.6 Discussion: Safety Checks for iProbe

Safety and reliability of the instrumentation technique is a big concern for most run-time instrumen-

tation techniques. One of the key advantages of iProbe is that because of its hybrid design reliability

and correctness issues are handled in a better way inherently. In this section we discuss how our

HotPatch can achieve such properties in details.

HotPatch check against Illegal instructions: Unlike previous techniques iProbe relies on

compiler correctness to ensure safety and reliability in its binary mode. To ensure correctness in our

ColdPatching phase, we convert call instructions to instrumentation functions with NOP instruction.

This does not in any way effect the correctness of the binary, except that instrumentation calls

are not made. To ensure run-time correctness, iProbe uses a safety check when it interrupts the

application while HotPatching. Our safety check pass ensures that the program counters of all threads

belonging to the target applications do not point to the region of code that is being overwritten

(i.e. NOP instructions are not overwritten while they are being executed. This check is similar to

those from traditional Ptrace[Linux Manual Ptrace, ] driven debuggers etc [Yamato et al., 2009;

UKAI, ]. Here we use the Ptrace GETREGS() call to inspect the program counter, and if it is

currently pointing to the target NOP instructions, we allow the execution to move forward before

applying the HotPatch. Unlike existing trampoline oriented mechanisms iProbe has a small NOP

code segments equal to the length of a single call instruction that it overwrites with instrumentation

calls, this means that the check can be performed in a fast and efficient manner. It is also important
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to have this check for all threads which share the code-segment, hence the checking must be able to

access the process memory map information, and interrupt all the relevant threads.

Safe parameter passing to maintain stack consistency: An important aspect for instrumen-

tation is the information passed along to the instrumentation function via the parameter values. Since

the instrumentation calls are defined by the compiler driven instrumentation, the mechanism in which

the parameters passed are decided based on the calling convention used by the compiler.

Calling conventions can be broadly classified in two types: caller clean-up based, and callee clean-up

based. In the former the caller is responsible to pop the parameters passed to function, and hence all

parameter related stack operations are performed before and after the call instruction inside the code

segment of the caller. In the later however, the callee is responsible to pop the parameters passed to

it. Since parameters are generally passed using the stack it is important to remove them properly to

mantain stack consistency.

To ensure this iProbe enforces that all calls that are made by the static compiler instrumentation

must be cdecl [Wikipedia, 2016b] calls where the caller performs the cleanup as compared to std

calls, where the callee performs it. As the stack cleanup is automatically performed, it maintains

stack consistency, and there is a negligible impact in performance due to the redundant stack

operations. Alternatively for std call convention, push instructions could also be converted to NOPs

and HotPatched at run-time, we do not do so as a design choice.

Address Space Layout Randomization: Another issue that iProbe addresses is ASLR (ad-

dress space layout randomization), a security measure used in most environments which randomizes

the loading address of executables and shared libraries. However, since iProbe assumes the full

access to the target system, the load addresses are easily available. HotPatcher uses the process id of

the target to find all load addresses of each binary/shared library and uses them as base offsets to

generate correct instruction pointer addresses.

5.7 Evaluation

In this section we evaluate various aspects of iProbe. Initially, we show the overhead of iProbe

on SPEC CPU 2006 benchmarks[Henning, 2006], we then showcase iProbe vs a normal mode,

the binary generated with initial -finstrument-function flag, and the ColdPatched version of the
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same binary. Since iProbe is also geared towards monitoring large scale systems, we also show the

overhead of iProbe ”ColdPatched” binaries in terms of throughput in apache httpd server, and the

mysql database. Then we present the overhead for ”HotPatching” itself wherein we measure the time

taken by iProbe to patch the functions in a live session. Lastly, we compare scalability of iProbe

compared to existing state of the art technique SystemTap [Prasad et al., 2005]

5.7.1 Overhead of ColdPatch

The SPEC INT CPU benchmarks 2006 [Henning, 2006] is a widely used benchmark in academia,

industry and research as relevant representation of real world applications. We tested iProbe on 8

benchmark applications shown in Figure 5.6. The first column shows the execution of a normal binary

compiled without any instrumentation or debug flags. The next column shows the execution time of

the corresponding binary compiled using the instrumentation flags (Note here the instrumentation

functions are dummy functions). Lastly, we show the overhead of a ColdPatched iProbe binary with

NOP instead of the call instruction. Each benchmark application was executed ten times using SPEC

benchmark tools. The overhead for a ColdPatched binary was found to be less than five percent for

all applications executed, and 0-2 percent for four of the benchmarks. The overhead here is basically

because of the NOP instructions that are placed in the binary as place-holders for the HotPatching.

In most non-compute intensive applications (e.g., apache, mysql) we have observed the overhead

to be negligible (less than one percent), with no observable effect in terms of throughput. Further

reduction of the overhead can be achieved by reducing the scope of the functions which are prepared

for function tracing by iProbe; for example only using place holders in selected components that

need to be further inspected. Negligible overhead of ColdPatching process of iProbe shows that

applications can be prepared for instrumentation (HotPatching) without adversly effecting the usage

of the application.

5.7.2 Overhead of HotPatching and Scalability Analysis

We compared iProbe with UTrace (User Space Tracing in SystemTap) [McGrath, 2009], and DynInst

[Buck and Hollingsworth, 2000] on a x86 64, dual-core machine with Ubuntu 12.10 kernel. To

test the scalability of these tools, we designed a micro-benchmark and tested the overhead for an

increasing amount of events instrumented. We instrumented a dummy application with multiple calls
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Figure 5.6: Overhead of iProbe “ColdPatch Stage” on SPEC CPU 2006 Benchmarks.

to an empty function foo, the instrumentation function in the cases simply increases a global counter

for each event triggered (entry and exit of foo). Tools were written using all three frameworks to

instrument the start and end of the target function and call the instrumentation function.

Figure 5.7 shows our results when applying iProbe and SystemTap on this micro-benchmark. To

test the scalability of our the tools, we have increased the number of calls made to foo exponentially

(increase by multiples of 10). We found that iProbe scales very well and is able to keep the overhead

to less than five times for millions of events (108) generated in less than a second (normal execution)

for entry as well as exit of the function. While iProbe executed in 1.5 seconds, the overhead observed

in SystemTap is around 20 minutes for completion of a subsecond execution, while DynInst takes

about 25 seconds.

As explained in Section 5.3, tools such as DynInst use a trampoline mechanism, hence have a

minimum of 2 call instructions for each instrumentation. Additionally SystemTap uses a context

switch to switch to the kernel space over and above the traditional trampoline mechanism, resulting

in the high overhead, and less scalability observed in our results.
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Figure 5.7: Overhead and Scalability Comparison of iProbe HotPatching vs. SystemTap vs. DynInst

using a Micro-benchmark.

5.7.3 Case Study: Hardware Event Profiling

5.7.3.1 Methodology

In this section, we present preliminary results on FPerf. The purpose of this evaluation is for the

illustration of iProbe as a framework for lightweight dynamic application profiling. Towards it, we

will discuss the results in the context of two FPerf features in hardware event profiling:

• Instrumentation Automation: FPerf automates hardware event profiling on massive func-

tions in modern software. This gives a wide and clear view of application performance

behaviors.
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• Profiling Automation: FPerf automates the profiling overhead control. This offers a desired

monitoring feature for SLA-sensitive production systems.

While there are many other important aspects on FPerf to be evaluated such as hardware event

information accuracy and different overhead control algorithms, we focus on the above two issues

related to iProbe.

Table 5.1: Experiment Platform.

CPU Intel CoreTM i5-2500 CPU 3.3GHz

OS Ubuntu 11.10

Kernel 3.0.0-12

Hardware event
PAPI 5.1.0

access utility

Applications SPEC CPU2006

Our testbed setup is described in Table 5.1. The server uses an Intel CoreTM i5 CPU running

at 3.3GHz, and runs Ubuntu 11.10 Linux with 3.0.0-12 kernel. FPerf uses PAPI 5.1.0 for hardware

performance counter reading, and the traced applications are SPEC CPU2006 benchmarks.

5.7.3.2 Instrumentation Automation
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Figure 5.8: The number of different functions that have been profiled in one execution.

Existing profilers featuring hardware events periodically (based on time or events) sample the
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system-wide hardware statistics and stitch the hardware information to running applications (e.g.

Intel VTune [Intel, 2011]). Such sampling based profilers work well to identify and optimize hot

code, but with the possibility of missing interesting application functions yet not very hot. In sharp

contrast, FPerf is based on iProbe framework, it inserts probe functions when entering and exiting

each target function. Therefore, FPerf can catch all the function calls in application execution. In

Figure 5.8, we use VTune and FPerf (without budget quota) to trace SPEC workloads with test data

set. VTune uses all default settings. We find that VTune misses certain functions. For example, on

453.povray VTune only captures 12 different functions in one execution. In contrast, FPerf does not

misses any function because it records data at enter/exit of each function. Actually, there are 280

different functions have been used in this execution. having the capability to profile all functions or

any subset in the program is desirable. For example, [Jovic et al., 2011] reported that in deployment

environment, non-hot functions (i.e., functions with low call frequency) might cause performance

bugs as well.

FPerf leverages iProbe’s all-function instrumentation and functions-selection utility to achieve

instrumentation automation.

5.7.3.3 Profiling Automation

We tested the measured performance overhead and the number of captured functions of FPerf with

different overhead budget. As shown in Figure 5.9, the Y axis of Figure 5.9 (a) and (b) is slow-down,

which is defined as the execution time with tracing divided by the execution time without tracing.

The Y axis of Figure 5.9 (c) and (d) is the number of profiled functions. The “budget” legend is

the total number of samples we assign FPerf to take. With no budgeting, FPerf records hardware

counter values at every enter/exit points of each function. From Figure 5.9 (b) and (d), no budgeting

can capture all the functions but with large 100x-1000x slow-downs. In contrast, FPerf showed its

ability to control the performance overhead under 5% in Figure 5.9 (a). Of course, FPerf had the

possibility to miss functions, as when the budget is too tight, we only sample a limited number of

function enter/exit points.

FPerf leverages iProbe’s scalability property (predictable low overhead) to achieve the automation

on realizing a low and controllable profiling overhead.
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Figure 5.9: Overhead Control and Number of Captured Functions Comparison.

5.8 Summary

Flexibility and performance have been two conflicting goals for the design of dynamic instrumentation

tools. iProbe offers a solution to this problem by using a two-stage process that offloads much of the

complexity involved in run-time instrumentation to an offline stage. It provides a dynamic application

profiling framework to allow for easy and pervasive instrumentation of application functions and

selective activation. We presented in the evaluation that iProbe is significantly faster than existing

state-of-the-art tools, and scales well in large application software.

As stated earlier iProbe is still limited in the sense that the overhead of iProbe depends

on the amount of instrumentation and the instrumentation points. Similar to other monitoring and

instrumentation tools, this makes it impossible to use for higher granularity monitoring or debugging

scenarios which can potentially impact production services. The results of our experiments with

iProbe motivated us to create Parikshan, which instead of simply reducing the instrumentation

overhead, de-couples the instrumentation problem from the user-facing production service. Instru-

mentation in Parikshan’s debug container has no impact on the production container, and allows
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debuggers to instrument with higher overheads.

iProbe can still be used as a standalone debugging tool as well as within the debug container

in Parikshan for assisting debuggers to do execution tracing and thereby catching the error. It’s low

overhead can help in an increased and longer debug window as compared to other instrumentation

tools.
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Chapter 6

Applications of Live Debugging

6.1 Overview

In the sections until now, we have introduced a framework for live debugging, a tool for pre-packaging

binaries to make them live debugging friendly. We now discuss some applications of live debugging

in the real-world, and how it can be used for actual debugging with existing tools or by modifying

existing mechanisms.

The debug container allows debuggers to apply any ad-hoc technique used in offline debugging.

However, in order for us to have continuous debugging, it is essential to allow forward progress of

the execution in the debug container. Furthermore, the divergence due to instrumentation should

not stop forward-progress in the debug-container. For instance, traditional monitoring approaches

such as execution traces, memory or performance profiling, which do not change the state or logic of

the executing component can be directly applied to the debug-container with little chance of debug

container diverging. The debug container in this case offers the advantage of allowing for a much

higher instrumentation overhead compared to what would be generally allowed in production services.

Similarly the debug container can be used as a staging mechanism for record-replay on demand to

ensure deterministic execution. It is essential however, that none of them functionally modifies the

application or else makes any modifications such that forward progress is impossible. Compared to

other approaches with heavier impact like step-by-step execution in interactive debugging tools, or

alternatively dynamic instrumentation through tools like Valgrind [Nethercote and Seward, 2007]

or PIN [Luk et al., 2005] which require a controlled debugging environment, Parikshan’s debug
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container is a safe blackbox which allows debugging or monitoring without any impact on production

services.

This chapter is divided in the following key parts: Firstly, in section 6.2, we discuss the advantages

and limitations of Parikshan in real-world settings. We highlight certain key points that the debugger

must be aware of when debugging applications with Parikshan, so that he can do reliable and fast

debugging. In section 6.3, we classify debugging production applications in two high level debugging

scenario categories: post-facto, and proactive analysis. We leverage these classifications to explain

how different techniques can be applied in Parikshan and the limitations of our system. Next we

list some existing debugging technologies, like statistical debugging, execution tracing, record and

replay etc. to explain how they can be either directly applied or modified slightly and applied with

the Parikshan framework to significantly improve their analysis.

Lastly, in section 6.5 we introduce budget-limited adaptive instrumentation. Which focuses

further on how to allow for continuous debugging with the maximum information gain. One of

the key criteria for successful statistical debugging is to have higher instrumentation rates, to make

the results more statistically significant. There is a clear trade-off between instrumentation vs

performance overhead for statistical instrumentation. A key advantage of using this with Parikshan

is that we can provide live feedback based buffer size and bounded overheads, hence squeezing the

maximum advantage out of statistical debugging without impacting the overhead. We evaluate the

slack available in each request for instrumentation without risking a buffer overflow and getting

out of sync of the production container. Budget limited instrumentation is inspired from statistical

debugging [Liblit et al., 2005], and focuses on a two-pronged goal of bounding the instrumentation

overhead to avoid buffer overflows in Parikshan, and simultaneously have maximum feedback

regarding information gained from real-time instrumentation.

6.2 Live Debugging using Parikshan

The following are some key advantages of Parikshan that can be leveraged for debugging user-facing

applications on the fly:

• Sandboxed Environment: The debug container runs in a sandboxed environment which is

running in parallel to the real production system, but any changes in the debug container are
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not reflected to the end-user. This is a key advantage in several debugging techniques which

are disruptive, and can change the final output.

Normal debugging mechanisms such as triggering a breakpoints or patching in a new excep-

tion/assertion to figure out if a particular “condition” in the application system state is breaking

the code, cannot be done in a production code as it could lead to a critical system crash. On

the other hand, Parikshan’s debug containers are ideal for this scenario as they will allow

developers to put in a patches without any fear of system failure.

• Minimal impact on production system: The most novel aspect of Parikshan is that it has

negligible impact of instrumentation on the production system. This means that high-overhead

debugging techniques can be applied on the debug-container incurring a negligible slow-down

in production containers.

Debugging techniques like record-replay tools which have traditionally high recording over-

heads can generally not be applied in production systems. However, Parikshan can be used to

decouple the recording overhead from production, and can allow for relatively higher overhead

recording with more granularity. Section 3.4.3.2 discusses evaluation results demonstrating

Parikshan’s negligible impact on production services.

• Capturing production system state: One of the key factors behind capturing the root-cause

of any bug is to capture the system state in which it was triggered. Parikshan has a live-cloning

facility that clones the system state and creates a replica of the production. Assuming that

the bug was triggered in the production, the replica captures the same state as the production

container.

• Compartmentalizing large-scale systems context: Most real-world services are deployed

using a combination of several SOA applications, each of them interacting together to provide

an end-to-end service. This could be a traditional 3 tier commerce system, with an application

layer, a database layer and a web front-end, or a more scaled out social media system with

compute services, recommendation engines, short term queuing systems as well as storage and

database layers. Bugs in such distributed systems are particularly difficult to re-create as they

require the entire large-scale system to be re-created in order to trigger the bug. Traditional
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record-replay systems if used are insufficient as they are usually focused on a small subset of

applications.

Since, our framework leverages network duplication, Parikshan can allow looking at applica-

tions in isolation and capturing the system state as well as the input of the running application,

without having to re-create the entire buggy infrastructure. In a complex multi-tier system this

is a very useful feature to localize the bug.

Above we summarized some of the advantages of using Parikshan, next we look at some of the

things an operator should keep in mind when using Parikshan for debugging purposes:

• Continuous Debugging and Forward Progress: The debug-container is where one can do

debugging runs in parallel to the production container. This is done by first making a live

replica of the system followed by duplicating and sending the network input to the debug

container. In a way the debug container still communicates with the entire system although

it’s responses are dropped. To ensure forward progress in the debug container, it is essential

that the debug container is in-sync with the production container, so that the responses, and the

requests from the network are the expected responses for forward progress in the application

running on the debug container.

Take for instance, a MySQL [MySQL, 2001] service running in the production container and

debug container. If during our debugging efforts we modify the state of the debug service such

that the MySQL database is no longer in synch with the production service, then any future

communication from the network could lead to the state of the debug-container to further

diverge from the production. Additionally, depending on the incoming requests or responses

the debug application may crash or not have any forward progress.

No forward-progress does not necessarily mean that debugging cannot take place, however for

further debugging, once the machine has crashed it needs to be re-cloned from the production

container.

• Debug Window: As explained earlier, most debugging mechanisms generally require in-

strumentation and tracking execution flow. This means that the application will spend some
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compute cycles in logging instrumentation points thereby having a slow-down. While Parik-

shan avoids slow-down in the production environment, there will be some slow-down in the

debug-container.

The amount of time till which the production container remains in synch with the debug

container is called the debug-window(see section 3.2.3). The window time depends on the

overhead, the size of the buffer and the incoming request rate. If a buffer overflow happens

because the debug-window has finished, the debug container needs to be re-synced with the

production container.

In our experiments, we have observed, that Parikshan is able to accommodate significant

overhead (an order of magnitude depending on workload) without incurring a buffer overflow.

Administrators or debuggers using Parikshan should keep the overhead of their instrumentation

in mind when debugging in Parikshan. production container can always be re-cloned to start a

new debugging session.

• Non-determinism:

One of the most difficult bugs to localize are non-deterministic bugs. While Parikshan is

able to capture system non-determinism by capturing the input, it is unable to capture thread

non-determinism. Most service-oriented applications have a large number of threads/processes,

which means that different threading schedules can happen in the production container as

compared to the debug-container. This means, that a specific ordering of events that caused a

bug to be triggered in the production container, may not happen in the debug-container.

There are multiple ways that this problem can be looked at. Firstly, while it’s difficult to

quantify, for all the non-deterministic cases in our case-studies, we were able to trigger the

bug in both the production and the replica. In the case where the bug is actually triggered in

the debug container, the debugging can take place as usual for other other bugs. If that is not

the case, there are several techniques which provide systematic “search” [Park et al., 2009;

Ganai et al., 2011] for different threading schedules based on a high granularity recording of

all potential thread synchronization points, and read/write threads. While such high granularity

recording is not possible in the production container, it can definitely be done in the debug

container without any impact on the production service.
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6.3 Debugging Strategy Categorization

Based on our case-studies, and survey of commonly seen SOA bugs we classify the following

scenarios for live debugging. In each of the scenarios we explain how different categories of bugs

can be caught or analyzed.

6.3.1 Scenario 1: Post-Facto Analysis

In this scenario, the error/fault happens without live debugging having been turned on i.e. the

service is only running in the production container, and there is no replica. Typically light-weight

instrumentation or monitoring is always turned on in all service/transaction systems. Such monitoring

systems are very limited in their capabilities to localize the bug, but they can indicate if the system is

in a faulty state.

For our post-facto analysis, we use such monitoring systems as a trigger to start live debugging

once faulty behavior is detected. The advantage of such an approach is that debugging resources are

only used on-demand, and in an otherwise normal system only the production container is utilizing

the resources.

There are three kind of bugs that can be considered in this kind of situation:

• Persistent Stateless Bugs:

This is the ideal scenario for Parikshan. Persistent bugs are those that persist in the application

and are long running. They can impact either some or all the requests in a SOA application.

Common examples of such bugs are memory leak, performance slow-down, semantic bugs

among others. Assuming they are statistically significant, persistent bugs will be triggered

again and again by different requests.

We define stateless bugs here as bugs which do not impact the state of the system, hence

not impacting future queries. For instance read only operations in the database are stateless,

however a write operation which corrupts or modifies the database is stateful, and is likely to

impact and cause errors in future transactions.

Hence, such bugs are only dependent on the current system state, and the incoming network

input. Once such a bug is detected in the production system, Parikshan can initiate a live
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cloning process and create a replica for debugging purposes. Assuming similar inputs which

can trigger the bug are sent by the user, the bug can be observed and debugged the debug

container.

• Persistent Stateful Bugs:

Stateful bugs are bugs which can impact the system state and change it such that any such

bug impacts future transactions in the production container as well. For instance in a database

service a table may have been corrupted, or it’s state changed so that certain transactions are

permanently impacted. While having the execution trace of the initial request which triggered a

faulty state is useful, the ability to analyze the current state of the application is also extremely

useful in localizing the error.

Creating a live clone after such an error and checking the responses state of future impacted

transaction, as well as the current state of the database can be a good starting point towards

resolving the error.

• Crashing Bugs:

Crashing bugs are bugs that lead to a crash in the system thereby stopping the service. Un-

handled exceptions, or system traps are generally the cause of such crashes. Unfortunately

Parikshan has limited utilization for post-facto analysis of a crashing bug. Since Parikshan is

not turned “on” at the time of the crash, any post-facto analysis for creating a debug container

is not possible.

6.3.2 Scenario 2: Proactive Analysis

Proactive analysis is the scenario where the user starts debugging when the system is performing

normally and their is no bug. This is the same as monitoring a production server, except that in this

case the instrumentation is actually present in the debug container.

Compared to traditional monitoring, one possible use-case is to use the debug container to do

high granularity monitoring at all times. This is extremely useful to have if you expect to have higher

overheads of instrumentation, which are unacceptable in the production environment. Since the

debug container can have much higher instrumentation without any performance penalty on the

production container, the instrumentation can be easily put there, and stay active at all times. Another
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useful feature is the case where the debugger needs to put in breakpoints or assertions which can

cause the system to crash. It is not possible to put such assertions, in active systems, but they can be

put in debug container to trigger future analysis.

Proactive recording is basically use to track bugs that could happen in the future as the transaction

or request which causes the failure is caught as well, as well as the system state. Once a bug is

caught, the cause can be independently explored in the debug container. It is useful for both stateless

and stateful bugs, we do not differentiate between them here as even in the case of a stateful bug,

debugging is always turned on. Proactive approaches can be compared to existing approaches like

statistical debugging [Liblit et al., 2005] which use active statistical profiling to compare between

successful and buggy runs, to isolate the problem. We discuss statistical debugging in section 6.4.2

and present an advanced approach based on the same in section 6.5. Other proactive body of work

include record-replay infrastructures, which record production systems, and can replay the execution

if a bug is discovered. In section 6.4.3, we have discussed another variant of proactive debugging

called “staged record-and-replay”, which is an advanced record-replay technique that can be applied

with the help of Parikshan.

6.4 Existing Debugging Mechanisms and Applications

6.4.1 Execution Tracing

One of the most common techniques to debug any application is execution tracing. Execution tracing

gives a trace log of all the functions/modules executed when an input is received. This helps the

debugger in looking at only those execution points and makes it easier to reason out what is going

wrong.

Execution tracing can happen at different granularity: for instance an application can be monitored

at function level granularity (only entry and exit of function is monitored), or for deeper understanding

at read/write, synchronization point or even instruction level granularity. Depending on how much

granularity the tracing is done at the overhead may be unacceptable for production systems.

Parikshan allows users to de-couple execution tracing from production execution by putting

their instrumentation in the debug container. As mentioned earlier, this allows for higher level

instrumentation at no cost to the production environment.
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6.4.1.1 CaseStudy: Execution Tracing

We now look into MySQL bug#15811 (see also section 4.3), this is a performance bug which happens

when dealing with complex scripts (Japanese, Chinese etc.). Let us look at how a debugger would go

about finding the root cause of such a bug. Firstly, let us say that a high level report of the bug is

provided by the user of a deployed production server. The report states that a certain category of

queries are having higher than expected transaction latencies. The user reports this as a potential bug

and asks for it to be investigated. Based on the user report, a post-facto MySQL replica is created

for debugging and analysis by the developer/debugger. The debugger then uses SystemTap tracing

tool [Prasad et al., 2005] to trace the execution of the application. This instrumentation is optionally

triggered whenever the input queries are found to be “chinese”. This can be easily done in MySQL

by setting trigger points when the language specification in the query is read inside MySQL query

parser.

Since the bug reported is a performance bug, the developer must first find out which module and

specifically which function is the cause of the bug. To find the time taken in each function, function-

level begin and exit instrumentation is added and the timestamp for each function is collected as

log evidence. This detailed evidence allows the debugger to localize and find the root-cause of the

error inside the “my strcasecmp()” function in comparison to the time taken by the function for

latin based queries. Once the performance bug, has been localized. The debug-container can then

be dis-connected from the proxy (alternatively proxy input forwarding can be stopped). Now, some

of the “read-only” queries which triggered this bug can be re-sent to the MySQL database, and a

step-by-step execution can be followed inside this function using deeper instrumentation to further

understand the code execution.

In our experiments for localizing this bug, we found that function level instrumentation for

profiling time-spent in each function can take from 1.5x to 1.8x overhead. This is clearly un-

acceptable in production systems. However, the Parikshan framework allows for capturing such

execution traces without impacting user-facing performance of the MySQL database. While such

persistent bugs can be debugged offline, it may be argued that such bugs can also be debugged in an

offline debugging environment. However, given no previous knowledge Parikshan gives a valuable

“first-attack” mechanism to debug unknown problems.
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6.4.2 Statistical Debugging

Statistical debugging aims to automate the process of isolating bugs by profiling several runs of the

program and using statistical analysis to pinpoint the likely causes of failure. The seminal work

on statistical debugging [Liblit et al., 2005], has lead to several advanced approaches [Chilimbi et

al., 2009; Arumuga Nainar and Liblit, 2010; Song and Lu, 2014], and is now a well established

debugging methedology.

The core mechanism of statistical debugging is to have probabilistic profiling, by sampling

execution points and comparing the execution traces for failed and successful transactions. It then

uses statistical models to identify path profiles that are strongly predictive of failure. This can be used

to iteratively localize the bug causing execution, and can then be manually analyzed by Parikshan.

Statistical debugging relies on the sampling frequency of the instrumentation, which can be

decreased to reduce the instrumentation overhead. However, the instrumentation frequency needs

to be statistically significant for such testing to be successful. Unfortunately, overhead concerns

in the production environment can limit the frequency of statistical instrumentation. In Parikshan,

the buffer utilization can be used to control the frequency of such statistical instrumentation in the

debug-container. This would allow the user to utilize the slack available in the debug-container for

instrumentation to it’s maximum, without leading to an overflow. Thereby improving the efficiency

of statistical testing.

Statistical debugging is one of the systematic bug localization approaches that can be directly

applied in the debug container, with the added advantage that the amount of instrumentation that can

be applied in the debug-container is much higher than production containers. Apart from regular

semantic bugs, previous body of works have shown that statistical debugging is useful in detecting a

variety of other bugs like concurrency bugs [Jin et al., 2010], and performance [Song and Lu, 2014].

6.4.3 Staging Record and Replay

One well known sub-category of debugging service-oriented applications are record-replay infras-

tructures. In the past decade there have been numerous record-and-replay infrastructures [Park et al.,

2009; Geels et al., 2007b; Saito, 2005; Mickens et al., 2010; Dunlap et al., 2002; Guo et al., 2008a;

Laadan et al., 2010; Viennot et al., 2013] which have been introduced in academia. The core focus

of these techniques is to faithfully reproduce the execution trace and allow for offline debugging.
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Figure 6.1: Staged Record and Replay using Parikshan

However, in order to faithfully reproduce the exact same instrumentation, the recording phase must

record a higher granularity of execution. Unfortunately, this means a higher overhead at the time

of recording in the production system. Such recording overhead is usually unacceptable in most

production systems.

Record and replay can be coupled with the debug container to avoid any overhead on the

production container. This is done by staging the recording for record-and-replay in the debug

container instead of the production, and then replaying that for offline analysis. In figure 6.1 we

show how the production system can first be “live-cloned”. A copy of the container’s image can be

stored/retained for future offline replay - this incurs no extra overhead as taking a live snapshot is

a part of the live-cloning process. Recording can then be started on the debug container, and logs

collected here can be used to do offline replay.

We propose that Parikshan provides a viable alternative to traditional record-replay techniques,

whereby a high granularity recording can be done on the debug container instead of the production

container. The amount of recording granularity ( or the amount of recording overhead) will depend
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on the workload of the system, and how much idle time to the debug container has to catch

up to the production container. Admittedly, non-determinism can lead to different execution

flows in the debug container v.s. the production container (with low probability as the system

is a clone of the original). Hence simply replaying an execution trace in the debug container,

may not lead to the same execution which triggers the bug. However several existing record-and-

replay techniques offer search capabilities to replay and search through all possible concurrent

schedules which could have triggered a non-deterministic error [Flanagan and Godefroid, 2005;

Ganai et al., 2011]. For instance PRES [Park et al., 2009] which uses a execution sketch of

synchronization record points which are used to guide search in the replay phase and try different

threading schedules. For doing search, feedback from previous replay executions is used to eliminate

the threading schedules that have already been tried.

6.4.3.1 CaseStudy: Staged Record-Replay

To show a use-case for staged record-replay we look at Redis bug #761 (see also section 4.3). As

explained earlier this Redis bug is an integer overflow error. Let us look at how a debugger would go

about finding the root cause of such a bug. Imagine that we are doing staged record-replay, whereby

the debug container is getting duplicated network inputs, and the debug container is “recording” the

execution in parallel by activating commodity record-replay tools.

The bug happens over a period of time when a request happens for an addition/storage of a large

integer, which leads to an integer overflow error. The execution trace of this bug will be captured in

the “record” log of the debug container, and can be replayed offline for debugging purposes. Since

the bug is a crashing bug, the execution can be replayed and a debugger can be attached to the

execution in the replay mode. Ideally, the transaction which has caused the error, is the last network

input. This transaction can be executed step-by-step with roll-back to localize the error point.

Under normal conditions, this recording would have caused an overhead on the production

container. Parikshan decouples it’s staged recording and can proceed without any overhead to

the production system. Recording overhead differs for different tools, and is often impractical

for production software. However, by decoupling recording instrumentation from the production

container, we can record at high granularities all the time, and replay whenever a bug is observed.
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6.4.4 A-B Testing

Figure 6.2: Traditional A-B Testing

A/B testing (sometimes called split testing) is comparing two versions of a web page to see which

one performs better. You compare two web pages by showing the two variants (let’s call them A and

B) to similar visitors at the same time. User operations in A can then be compared to user scenario’s

in B to understand which is better, and how well it was received. Typically A/B testing is done to

test and verify beta releases and optimizations, and how they impact the user. A/B Testing can be

extended in Parikshan by leveraging the debug container for evaluating patches for performance

optimization or functional improvements. These patches must be functionally similar and have same

network level input/output to ensure forward progress. Parikshan can thereby provide limited insight

into beta releases before they are introduced in production.

6.4.5 Interactive Debugging

The most common debugging tools used in the development environment are interactive debuggers.

Debugging tools like gdb [Stallman et al., 2002], pdb, or eclipse [D’Anjou, 2005], provide intelligent

debugging options for doing interactive debugging. This includes adding breakpoints, watch-points,

stack-unrolling etc. The downside to all of these techniques is that not only do they incur a
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performance overhead, they need to stop the service or execution to allow interactive debugging.

Once a process has been attached to a debugger, a shadow process is also attached to it and the rest

of the execution follows with just-in-time execution, allowing the debugger to monitor the progress

step-by-step therefore making it substantially easier to catch the error. Clearly, such techniques are

meant for development environment and cannot be applied to production environments.

However this can be easily applied towards the debug container, where the execution trace can

be observed once a breakpoint has been reached. While this does mean that the replica will not be

able to service any more requests (except for those that have been buffered), the request which is

inside the breakpoint will be processed. Generally breakpoint and step-by-step execution monitoring

is used for a limited scope of execution within a single transaction. Once, finished future transactions

can also be debugged after doing a re-sync by applying live cloning again.

6.4.5.1 CaseStudy: Interactive Debugging

As mentioned earlier, the downside of interactive debugging is that it puts significant overhead on the

running program. This is because debuggers can do step-by-step execution on breakpoints, and can

exactly map the execution of given training requests. Let us look at a memory leak example from

Redis bug #417. The bug shows itself as an increasing memory footprint ( or a leak), which can be

easily observed from any monitoring software by looking at the amount of memory being consumed

by the Redis server. Once the bug is reported, the developer can trigger a live-clone in Parikshan and

create a debug container.

Since this bug is a slow-increasing memory leak it does not lead to an imminent crash (crash

could take a few days). Monitoring software and periodic memory or file process snapshots in the

debug-container (use of lsof command, or vsz) can tell us that stale connections are left from the

master to the slave. This indicates to the debugger that the problem is likely in replication logic

of master. We then put a breakpoint in the replication source code at the point when a connection

is created. This “breakpoint” will be triggered whenever a replication is triggered (replication is

triggered periodically), and will allow the debugger to step-by-step execute the process. Parikshan

debug-containers can manage significant overhead before they diverge from the production container.

However, once step-by-step execution is triggered it is ideally going to allow the debugger access

to only those transactions currently in the proxy buffer (depending on the application, transactions
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and buffer-size, the buffer could have several transactions). The step-by-step execution, will give a

detailed understanding to the user of the transaction that is being currently executed, and can also be

used for those which are in the buffer. The step-by-step inspection will allow the debugger to see that

the connection was not closed at the end of the periodic replication process (which is causing the

leak). The error was caused because of a condition which was skipping the “connection close” logic

when db was configured >=10.

6.4.6 Fault Tolerance Testing

One of the places that Parikshan can be applied is for fault tolerance testing. To motivate this let

us look at Netflix’s current testing model. Netflix has a suite of real-time techniques [Basiri et al.,

2016] for testing fault-tolerance of it’s systems. Amongst them, chief is chaos monkey [Tseitlin,

2013], which uses fault injection in real production systems to do fault tolerance testing. It randomly

injects time-outs, resource hogs etc. in production systems. This allows Netflix to test the robustness

of their system at scale, and avoid large-scale system crashes. The motivation behind this approach

is that it’s nearly impossible to create a large-size test-bed to have a realistic fault tolerance testing

for the scale of machines that Netflix has. Chaos Monkey allows Netflix to do it’s fault tolerance

testing at a small cost to the customer experience, while avoiding fatal crashes which could lead to

longer downtimes. The obvious downside of this approach is that the service becomes temporarily

unavailable and re-sets, or forces a slow-down on the end-user experience (this may or may not be

visible to the user).

Since Parikshan can be run in a live system, it can be attached to a scaled out large-system, and

can allow users to test for faults in an isolated environment, by creating a sub-set of debug container

container nodes where the fault will be injected. The only limitation being that the fault-injections

should be such that the impact of these faults can be isolated to the targeted debug container systems,

or a sub-domain of a network which has been cloned, and the tolerance built into the system can be

tested (it would be too expensive to clone the entire deployment). This allows for fault tolerance

testing, and at the same time hiding it’s impact from the end-user.
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6.5 Budget Limited, Adaptive Instrumentation

As explained in section 3.2, the asynchronous packet forwarding in our network duplication results

in a debug window. The debug window is the time before the buffer of the debug-container overflows

because of the input from the user. The TCP connection from end-users to production-containers are

synchronized by default. This means that the rate of incoming packets is limited by the amount of

packets that can be processed by the production container. On the other hand, packets are forwarded

asynchronously to an internal-buffer in the debug-container. The duration of the debug window is

dependent on the incoming workload, the size of the buffer, and the overhead/slowdown caused due

to instrumentation in the debug-container. Each time the buffer is filled, requests are dropped, and the

debug-container can get out of sync with the production container. To get the debug-container back

in sync, the container needs to be re-cloned. While duplicating the requests has negligible impact on

the production container, cloning the production container can incur a small suspend time(workload

dependent).

The duration of the debug window can be increased by reducing the instrumentation. At the same

time we wish to increase the maximum information that can be gained out of the instrumentation to

do an effective bug diagnosis. Essentially for a given buffer size and workload, there is a trade-off

between the information gain due to more instrumentation and the duration of the debug window.

Hence our general objective is to increase the information gain through instrumentation while

avoiding a buffer overflow.

We divide this task into pro-active and re-active approaches which can complement each other.

Firstly, we pro-actively assign budgets using queuing theory. Using a poisson distribution for average

processing time of each request and the inter-arrival time of requests, we can find expected buffer sizes

for a reasonable debug-window length. Secondly, we propose a reactive mechanism, whereby buffer

utilization can be continuously monitored and the instrumentation sampling can be exponentially

reduced if the buffer is near capacity.

6.5.1 Proactive: Modeling Budgets

In this section we model the testing window by using concepts well used in queuing theory (for

the sake of brevity we will avoid going into too much detail, readers can find more about queuing
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Figure 6.4: External and Internal Mode for live cloning: P1 is the production, and D1 is the debug

container.

theory models [Gnedenko and Kovalenko, 1989]). Queues in a SOA application can be modeled as a

M/M/1/K queue (Kendall’s notation [Kendall, 1953]). The standard meanings associated with each

of these letters are summarized below.

A represents the inter-arrival time distribution

B represents the service time distribution

C gives the number of servers in the queue

D gives the maximum number of jobs that can be there in the queue.

E represents the Queueing Discipline that is followed. The typical ones are First Come First

Served (FCFS), Last Come First Served (LCFS), Service in Random Order (SIRO) etc. If this is

not given then the default queueing discipline of FCFS is assumed.

The different possible distributions for A and B above are:
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M exponential distribution

D deterministic distribution

Ek Erlangian (order k)

G General

Figure 6.3 represents a simple client-server TCP queue in an SOA architecture based on the

M/M/1/K queue model. An M/M/1/K queue, denotes a queue where requests arrive according to a

poisson process with rate λ, that is the inter-arrival times are independent, exponentially distributed

random variables with parameter λ . The service times are also assumed to be independent and

exponentially distributed with parameter µ. Furthermore, all the involved random variables are

supposed to be independent of each other. In the case of a blocking TCP queue common in most

client-server models, the incoming request rate from the client is throttled based on the request

processing time of the server. This ensures that there is no buffer-overflows in the system.

In Parikshan, this model can be extended to a cloned model as shown in figure 6.4. The packets

to both the production and the debug cloned containers are routed through a proxy which has internal

buffer to account for slowdowns in request processing in the debug container. Here instead of the

TCP buffer, we focus on the request arrival and departure rate to and from the proxy duplicators

buffer. The incoming rate remains the same as λ, as the requests are asynchronously forwarded to

both containers without any slowdown.

To simplify the problem, we identify the following variables:

This is the maximum capacity at which the production container can process requests

µ1 = processing time for requests of original container (6.1)

This is the maximum capacity at which the debug container can process requests

µ2 = processing time for requests of debug container (6.2)

Taking the above two equations, the overhead can be modeled as follows

µ3 = µ1 − µ2 = slowdown of debug compared to original (6.3)
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The remaining processing time for both the production container and the debug container is

going to be the same. Since the TCP buffer in the production container is a blocking queue, we can

assume that any buffer overflows in the proxy buffer are only caused because of the instrumentation

overhead in the debug-container, which is accounted for by µ3.

Without going into the theoretical basis, Kendall’s notation and queuing theory suggest that for a

stable queue with a bounded buffer the incoming rate of requests should be less than the outgoing rate.

Once the incoming rate is more than the outgoing rate from the queue, the queue follows brownian

motion, and exponentially fills up. Hence for our debug system to be stable the goal still remains to

allocate debugging overhead such that:

λ < µ2 (6.4)

The equation above gives us the basis to build certain guidlines for the instrumentation overhead

guarantees in the debug containers, and how to create the buffer. As can be easily understood, that if

the rate of incoming requests (λ) to the production container itself is continuously equal to µ1 (i.e.

it’s maximum capacity), then intuitively there is no “slack” available to debug container to catch up

to the production container. However for production services, which generally run far below the

maximum capacity, there will be significant opportunity for instrumentation in the debug container,

without impacting the user performance. This debug container uses the idle time in between requests

to catch up to the production container, thereby remaining in synch.

The advantage of the of our internal buffer in the duplication proxy in this scenario, is that it

provides a lengthy debug window in the case of a spike in the workload. Once the debug container

starts lagging behind the production container, the requests start piling in the internal buffer. Spikes

are generally short, bursty and infrequent, hence given some idea of the spike in the workload the

operator can set the buffer size and instrumentation such that he can avoid the overflow.

6.5.2 Extended Load-balanced duplicate clones

Our model can be further extended into a load-balanced instrumentation model as shown in figure 6.5.

This is useful when the debugging needs to be higher, but we have a lower overhead bound through

only one clone. Here we can balance the instrumentation across more than one clones, each of which

receive the same input. They can together contribute towards debugging the error, as well as increase
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the amount of instrumentation that can be done without incurring an overhead. Hence, if earlier we

had enough slack in the “production system” to have a 2x overhead instrumentation in the debug

container, with an extra replica, the amount instrumentation can be potentially raised to 4x overhead,

each managing some part of the instrumentation.
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Figure 6.5: This figure shows how queuing theory can be extended to a load balanced debugging

scenario. Here each of the debug container receive the requests at rate λ, and the total instrumentation

is balanced across multiple debug containers.

As explained earlier, the overhead in each of load balanced debug containers should ensure that

it can process the incoming request rate.

6.5.3 Reactive: Adaptive Instrumentation

Adaptive instrumentation reduces or increases sampling rate of the dynamic instrumentation in

order to decrease the overhead. This allows the debug-container time to catch up to the production

container without causing a buffer overflow.

A mechanism similar to TCP’s network congestion avoidance mechanisms can be applied on

the monitoring buffer. We also derive inspiration from statistical debugging [Song and Lu, 2014;

Chilimbi et al., 2009; Liblit et al., 2005], which shows how probabilistically instrumenting predicates,

can assist in localizing and isolating the bug. Predicates can be branch conditionals, loops, function
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calls, return instructions and if conditionals. Predicates provide significant advantages in terms of

memory/performance overheads. Instead of printing predicates, they are usually counted, and a

profile is generated. This reduces the amount of instrumentation overhead, and several predicates

can easily be encoded in a small memory space. Similar techniques have also been applied for

probabilistic call context encoding in-order to capture execution profiles with low overhead.

The sampling rate of instrumentation in the debug-container can be modified based on the amount

of buffer usage. The following are the key components of adaptive instrumentation:

• Buffer Monitoring: The first step involves monitoring the buffer usage of the network dupli-

cator. If the buffer usage is more than a certain threshold, the sampling rate of instrumentation

can be exponentially decreased. This would increase the idle time in the debug container

allowing it to catch up to the production and reducing the buffer usage.

• Controller: The controller allows debuggers to control the sampling rate of instrumentation.

The sampling rate can be controlled for each predicate. Similar to statistical debugging the

predicates with lower frequency can have higher sampling rates, and predicates with higher

frequency can have lower sampling rates. This ensures overall better information gain in any

profile collected.

6.5.4 Automated Reactive Scores

A statistical record is maintained for each predicate, and the overall success of execution is captured

by the error log. We assume worker-thread model, where we are able to associate the success/failure

of the transaction by associating process-ids and error log transaction ids. The instrumentation cost

for each instrumentation profile can be as follows.

i=n∑
i=1

xi = InstrumentationScore(x) ∗ StatisticalScore(x) (6.5)

Each predicate is given a total score based on the following parameters:

• Statistical Importance Score: The statistical importance score defines the importance of

each predicate as an indicator for isolating the bug.The main idea is derived from statistical

debugging work done by Liblit et Al
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• Instrumentation Overhead Score: Adaptive score keeping track of counters of each predi-

cate. Can be used as a weighing mechanism for figuring out the total cost.

Hence Parikshan can be combined with standard statistical debugging techniques to manage the

instrumentation overhead such that it does not exceed the debug window or the debug container does

not lag to far behind the production container. While an actual implementation is beyond the scope

of this thesis, the above discussion presents some grounds on how this solution can be designed.

6.6 Summary

In this section we have discussed how Parikshan can be applied in real-world bugs and how a

developer can actually do debugging of production systems. To explain the process better we first

categorized the debugging scenarios into two distinct categories: post-facto, and proactive debugging.

We have then described several existing debugging tools which can be applied in Parikshan’s debug-

container to make debugging more efficient and effective. Lastly, we introduced a budget limited

adaptive debugging technique which can be used to model “allowed” instrumentation overhead for

continuous debugging in the debug container.
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Chapter 7

Related Work

7.1 Related Work for Parikshan

7.1.1 Record and Replay Systems:

Record and Replay [Altekar and Stoica, 2009; Dunlap et al., 2002; Guo et al., 2008b; Geels et al.,

2007a; Veeraraghavan et al., 2012] has been an active area of research in the academic community

for several years. In diagnosing the source of a bug, we often need to re-execute the program many

times and expect the program to deterministically exhibit the same erroneous behavior, which can be

enforced by deterministic replay. Other potential applications include online program analysis, fault

tolerance, performance prediction, and intrusion analysis. These systems can be divided into two

phases: a recording phase, which records and logs the execution traces of a running system, and a

replay phase, which replays these logs so that the execution can be debugged offline in a development

environment. The advantage is that production bugs can be captured and debugged later on.

Deterministic replay can faithfully reproduce a program execution on demand, which greatly

facilitates cyclic debugging. Hence, deterministic replay is widely accepted as an important aspect of

a debugging program (especially parallel program). These systems offer highly faithful re-execution

in lieu of performance overhead. For instance, ODR [Altekar and Stoica, 2009] reports 1.6x, and

Aftersight [Chow et al., 2008] reports 5% overhead, although with much higher worst-case overheads.

Parikshan avoids run-time overhead, but its cloning suspend time may be viewed as an amortized

cost in comparison to the overhead in record-replay systems. Parikshan can be also imagined as a
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live network record and replay, where the debug container is replaying the execution using network

logs which are stored in the buffer. Another advantage of this approach is that it reduces the recording

log overhead which may be a concern for some record-replay systems. A key difference between

Parikshan and other approaches is that the primary use-case of Parikshan is to allow live on-the-fly

debugging.

Further recording in record-replay systems can be considered to be at different levels - library

level, system call level, and vmm read/write level. From an implementation point-of-view record-

replay systems have been implemented at different layers - at user-space layer, system call layer,

virtual machine layer. Recent approaches in record and replay have been extended to mobile

softwares [Hu et al., 2015; Qin et al., 2016], and browsers [Chasins et al., 2015]. Parikshan can be

considered similar to user-space layer recording of only network input.

7.1.2 Decoupled or Online Analysis

Broadly we categorize decoupled analysis as work where parallel execution similar to Parikshan has

been employed to gather execution insights. For instance, among record and replay systems, the

work most closely related to ours is Aftersight [Chow et al., 2008]. Similar to Parikshan, aftersight

records a production system and replays it concurrently in a parallel VM. While both Aftersight and

Parikshan allow debuggers an almost real-time diagnosis facility, Aftersight suffers from recording

overhead in the production VM. The average slow-down in Aftersight is 5% and can balloon upto

31% to 2.6x for worst-case scenario. While in it’s normal mode, aftersight requires the replica

virtual machine to catch up with the original. Although, aftersight also has mode which allows

it to proceed with divergence, this removes the overhead required for catching up to the original

execution - Parikshan mainly differs in it’s philosphy with aftersight, while aftersight focuses more

on determinism and synchronization between the production and debug VM, Parikshan focuses more

on parallel execution and debugging, while allowing for more divergence without any recording

overhead.

Another recent work called, VARAN [Hosek and Cadar, 2015] is an N-version execution monitor

that maintains replicas of an existing app, while checking for divergence. Parikshan’s debug

containers are effectively replicas: however, while VARAN replicates applications at the system

call level, Parikshan’s lower overhead mechanism does not impact the performance of the master
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(production) app. Unlike lower-level replay based systems, Parikshan tolerates a greater amount of

divergence from the original application: i.e., the replica may continue to run even if the analysis

slightly modifies it.

Another category, online program analysis monitors and checks the data flow and control flow

of program execution on the fly [Goodstein et al., 2015; Ganai et al., 2012]. For example, taint

analysis, which is a representative online program analysis technique, tracks each memory location

in the address space of the program to identify whether its value is tainted (i.e., directly or indirectly

relying on suspicious external input). If tainted data is used in sensitive ways (e.g., changing the

control flow), the taint analyzer will raise an error. Online program analysis is widely regarded as an

effective technique to debug programs and defend security attacks. However, online program analysis

is not efficient, especially when the analysis is performed at instruction granularity. Many online

program analysis techniques may even bring over a 10 times slowdown on commodity computer

systems [Newsome, 2005].

REPFRAME [Cui et al., 2015] is another tool which provides an efficient and transparent

framework that decouples execution and analysis by constructing multiple equivalent executions.

REPFRAME leverages a fault tolerant technique ( transparent state machine replication), which

runs the same software on a set of machines or replica’s, and ensures that all the replicas see

the same sequence of input and process these inputs with the same efficient thread interleavings

automatically. This is achieved by leveraging a technique called transparent state machine replication

and deterministic multi-threading to ensure that the same execution is followed by the replicas.

Unlike Parikshan, deterministic multi-threading in all replicas ensures that the same execution is

done in all replica’s and analysis can be parallelized (i.e. non-determinism is not an issue). However

the core focus on REPFRAME is dynamic analysis of code execution as an offline process instead of

an in-production system.

7.1.3 Live Migration and Cloning

Live migration of virtual machines facilitates fault management, load balancing, and low-level system

maintenance for the administrator. Most existing approaches use a pre-copy approach that copies the

memory state over several iterations, and then copies the process state. This includes hypervisors

such as VMWare [Nelson et al., 2005], Xen [Clark et al., 2005], and KVM [Kivity et al., 2007]. VM
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Cloning, on the other hand, is usually done offline by taking a snapshot of a suspended/ shutdown

VM and restarting it on another machine. Cloning is helpful for scaling out applications, which use

multiple instances of the same server. There has also been limited work towards live cloning. For

example Sun et al. [Sun et al., 2009] use copy-on-write mechanisms, to create a duplicate of the

target VM without shutting it down. Similarly, another approach [Gebhart and Bozak, 2009] uses

live-cloning to do cluster-expansion of systems. However, unlike Parikshan, both these approaches

starts a VM with a new network identity and may require re-configuration of the duplicate node.

Back-and-forth live migration [Lee et al., 2016], which means a running VM migrates between

two physical machines back and forth. Traditional methods treat each migration as a single event, so

the VM releases its system resources on the source site after migration. However, many resources

can be kept to mitigate the cost of the next migration back to the machine. Parikshan’s process of

live cloning from production to debug-container is similar to back and forth migration. The total

migration time can be saved up to 99% for some applications.

7.1.4 Monitoring and Analytics

Multi-tier production systems are often deployed in a number of machines/containers in scalable

cloud infrastructure, and have active monitoring and analysis. In the past few years several products

are used for live analytics [Enterprises, 2012; Barham et al., 2004; Tak et al., 2009], which are able

to give insights by doing high level monitoring based on application logs.

Magpie [Barham et al., 2004] is a system for monitoring and modeling server workload. Magpie

coalesces windows system event logs into transactions using detailed knowledge of application

semantics supplied by the developer. XTrace [Fonseca et al., 2007] and Pinpoint [Chen et al.,

2004] both trace the path of a request through a system using a special identifier attached to each

individual request. This identifier is then used to stitch various system events together. GWP [Ren

et al., 2010], Dapper [Sigelman et al., 2010], Fay [Erlingsson et al., 2012], Chopstix [Bhatia et al.,

2008] are distributed tracing systems for large scale data centers. Fay and Chopstix leverage sketch,

a probabilistic data structure for metric collection, and dapper and GWP use sampling for recording

a profile. While most of these systems can give a good indication of the presense of an error, and

some can even help localize the critical path of a bug, often debugging itself requires modification

which cannot be done in these systems. The Parikshan framework can be triggered using alerts from
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such live analysis frameworks. This can avoid usage of resources for debug container all the time,

instead it can only be used once an analytic framework has found a problem. The debug container

can then be used for finding the root-cause of the error.

7.2 Related Work for iProbe

Figure 7.1: Advantages of iProbe over existing monitoring frameworks DTrace/SystemTap and

DynInst

7.2.1 Source Code or Compiler Instrumentation Mechanisms

Source code instrumentation is one of the most widely available mechanisms for monitoring. In

essence, users can insert debug statements with runtime flags to dump and inspect program status

with varying verbosity levels. The log4j [Gupta, 2003] and log4c [Goater, 2015] frameworks are

commonly used libraries to perform program tracing in many open source projects in the source

code level. Additionally compilers have several inbuilt profilers which can be used along with tools

such as gprof and jprof to gather statistics about program execution. While source code techniques

allow very light weight instrumentation, by design they are static and can only be changed at the

start of application execution. iProbe on the other hand offers run-time instrumentation that allows

dynamic decisions on tracing with comparable overhead.
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7.2.2 Run-time Instrumentation Mechanisms

There are several kernel level tracing tools such as DTrace, LTTng, SystemTap [McDougall et

al., 2006; Desnoyers and Dagenais, 2006; Prasad et al., 2005] developed by researchers over the

years. iProbe differs from these approaches mainly in two ways: Firstly, all of these approaches

use a technique similar to software interrupt to switch to kernel space and generate a log event

by overwriting the target instructions. They then execute the instrumentation code, and either

generate a trampoline mechanism or re-execute the overwritten target instructions and then jump

back to the subsequent instructions. As shown in Figure.7.1 this introduces context-switches between

user-space and the kernel, causing needless overhead. iProbe avoids this overhead by having a

completely user-space based design. Secondly, all these approaches require to perform complex

checks for correctness which can cause unnecessary overhead at both hotpatching, and when running

an instrumented binary.

Fay [Erlingsson et al., 2012] is a platform-dependent approach which uses the empty spaces at

the start of the functions available in Windows binaries for instrumentation. To ensure the capture

of the entry and exit of functions, Fay calls the target function within its instrumentation thereby

introducing an extra stack frame for each target instrumentation. This operation is similar to a

mini-trampoline and hence incurs an overhead. Fay logs function execution in the kernel space and

hence also has a context-switch overhead. iProbe avoids such overhead by introducing markers at

the beginning and end of each function using a

Another well known tool is DynInst[Buck and Hollingsworth, 2000]. This tool provides a rich

dynamic instrumentation capability and has pure back box solution towards instrumentation of any

application. However, as shown in Figure.7.1 it is also based on traditional trampoline mechanisms,

and induces a high overhead because of unnecessary jump instructions. Additionally it can have

higher overhead because of complex security checks. Other similar trampoline based tools like kaho

and katana[Bratus et al., 2010; Yamato et al., 2009] have also been proposed, but they focus more

towards patching binaries to add fixes to correct a bug.

7.2.3 Debuggers

Instrumentation is a commonly used technique in debugging. Many debuggers such as gdb [Stallman

et al., 2002] and Eclipse have breakpoints and watchpoints which can stop the execution of programs
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and inspect program conditions. These features are based on various techniques including ptrace

and hardware debugging support (single step mode and debug registers). While they provide such

powerful instrumentation capabilities, there are in general not adequate for beyond the debugging

purposes due to overwhelming overhead.

7.2.4 Dynamic Translation Tools

Software engineering communities have been using dynamic translation tools such as Pin [Luk et al.,

2005] and Valgrind [Nethercote and Seward, 2007] to inspect program characteristics. These tools

dynamically translate program code before execution and allow users to insert custom instrumentation

code flexibly. They are capable to instrument non-debug binaries and provide versatile tools such

as memory checkers and program profilers. However, similar to debuggers, they are generally

considered as debugging tools and their overhead is significantly higher than runtime tracers.
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Chapter 8

Conclusions

8.1 Contributions

The core of the material presented in this thesis is based on techniques for debugging applications

on the fly in parallel to production services (we call this live debugging). In contrast to existing

techniques which have instrumentation overhead, our technique does not incur any overhead, and

keeps the debugging and production environment isolated.

The following are the contributions made in this thesis:

• We presented a general framework called Parikshan (see chapter 3), which allows debuggers

faster time to bug resolution at negligible overhead in parallel to a production application.

The system first creates a live replica (clone) of a running system, and uses this replica

specifically for debugging purposes. Next we duplicate and send network inputs to both

the production application and the replica using a customized network proxy. As stated

previously our main emphasis is to isolate any changes or slow-down in the replica from the

user-facing production service, hence never impacting user-experience. In our experiments, we

have shown that the debug container can manage significant slow-down, while still faithfully

representing the execution of the production container. We believe that the increased granularity

of instrumentation and the ability to instrument in an isolated environment, will be valuable to

administrators and significantly reduce time to bug localization.

• We have presented case-studies (see chapter 4) which demonstrate that network input is
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enough to capture most bugs in service oriented applications. We used a network duplica-

tion proxy, and re-created 16 real-world bugs from several well known service applications

(Apache, MySQL, Redis, HDFS, and Cassandra). The purpose of this study was to show

that if the network input was duplicated and sent to both the production service and it’s

replica(debug container), the bug will be triggered in both for most common bugs. We chose

bugs from the following categories: semantic, resource leak, concurrency, performance and

mis-configuration. To show that these categories represent most of the bugs found in service

systems, we did a survey of 220 bugs reported in three well known applications (MySQL,

Apache, and Hadoop), and manually categorized the bugs we found.

• We have presented a novel hybrid instrumentation tool called iProbe (see chapter 5), as

part of our tool-set to enable debugging applications. Similar to existing techniques iProbe

allows run-time binary instrumentation of execution points (functions entry, exit etc.), with

significantly less overhead. iProbe de-couples the process of run-time instrumentation into

offline (static) and online (dynamic) stages (hence called hybrid instrumentation). This avoids

several complexities faced by current state-of-the-art mechanisms such as instruction over-

writing, complex trampolines, code segment memory allocation and kernel context switches.

We used a custom micro-benchmark to compare the overhead of iProbe in comparison

to well known instrumentation tools systemtap [Prasad et al., 2005] and dyninst [Buck and

Hollingsworth, 2000], and found an order of magnitude better performance at heavier profiling.

• In chapter 6, we have presented applications for live debugging, where we discuss sev-

eral existing approaches which can be applied in the Parikshan framework to make them

more effective. Apart from existing tools, we have also introduced the design of two new

applications. Firstly, we have discussed a budget-limited instrumentation approach for

debugging applications in parallel to production services. This approach provides the

debugger guidelines for maximum instrumentation overhead allowed so as to avoid buffer

overflows in Parikshan, and subsequently longer un-interrupted debugging opportunities for

the user. Secondly, we have introduced active-debugging, which allows debuggers to eval-

uate fixes, and performance patches in parallel to a production service. This leverages

Parikshan’s isolated debug container to not just debug but actually test application in a “live”



CHAPTER 8. CONCLUSIONS 159

environment.

8.2 Future Directions

There are a number of interesting future work possibilities, both in the short term and further into the

future.

8.2.1 Immediate Future Directions

• Improve live cloning performance: The current protoype of livecloning is based on container

virtualization and previous efforts in live migration in OpenVZ [Kolyshkin, 2006]. However,

our implementation is limited by the performance of the current level of performance of current

live migration efforts. Live migration is a nascent research topic in user-space container level

virtualization, however there has been significant progress in live-migration in virtual machine

virtualization.

One key limitation in the current approach is that it has been built using rsync [Tridgell and

Mackerras, 1996] functionality. This is much slower than current state-of-the-art techniques

in full VM virtualization, which rely on network file systems to synchronization images

asynchronously [Palevich and Taillefer, 2008]. Other optimizations include post-copy migra-

tion [Hines et al., 2009] which does lazy migration - the idea is to do on-demand transfer of

pages by triggering a network page fault. This reduces the time that the target container is

suspended, and ensures real-time performance. The current implementation in Parikshan uses

the traditional pre-copy migration [Clark et al., 2005], which iteratively syncs the two images

to reduce the suspend time.

Live cloning can be used in two scenarios, either with a fresh start where the target physical

machines do not have a copy of the initial image. However, more commonly once the first live

clone has been finished, the target is to reduce the suspend time of subsequent live cloning

requests. This is different from live migration scenario’s. For instance, future research can

focus on specifically on reducing this downtime by keeping track of the “delta” from the point

of the detection of divergence. This will reduce the amount of page faults in a post-copy

algorithm, and can potentially improve live cloning performance compared to migration.
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• Scaled Mode for live-debugging: One key limitation of live-debugging is the potential for

memory overflow. The period till a buffer overflow happens in the proxy, is called the debug

window. It is critical for continuous debugging that the debug window be as long as possible.

The size of this window, depends on the instrumentation overhead, the amount of workload,

and the buffer size itself.

Hence, it may be possible that at times for very heavy instrumentation or workload, the debug

window becomes too short to be of practical use. To counter this it is Parikshan can be

extend to create multiple replica’s instead of just one. The framework can then be extended

to load-balance the instrumentation in different containers, and generate a merged profile to

be viewed by the debugger. Scaling can be dynamic such that it is dependent on spikes in

workload. Workload of most systems are generally periodic in the sense a website might have

more hits during 9am-5pm, but almost none at midnight.

• Live Cloning in Virtual Machines There are two different kinds of virtualization technolo-

gies: user-space or container based virtualization, or full stack VM virtualization. In our

implementation in Parikshan, we have used user-space containers as they are more light

weight, and a full VM would have a higher overhead and take more resources. However overall

the full VM virtualization is more mature, and has much better migration technology. This

leads us to believe that live cloning if applied using virtual machines would be much faster,

and would make Parikshan available in most traditional cloud service providers which still

allocate resources using VM’s.

8.2.2 Possibilities for Long Term

• Collaborative Debugging: Parikshan provides debug container, which are isolated from the

production container. The network input for the production service is duplicated in the debug

container, which can be viewed by the user. Our framework can be extended to create multiple

replica’s instead of just one for the purpose of debugging. Each replica is isolated from the

other and can be assigned to a developer. For critical bugs, with faster resolution required it

may be possible for two developers to work on their own debug container and collabarate on a

bug being triggered by the same input.
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• New live debugging primitives and interactive debugging features Live debugging or de-

bugging on the fly introduced in this thesis, allows developers to peek into the execution of an

application while it’s also running in the production. Since we are applying live debugging

in a production environment, it may be possible to think of newer primitives for debugging.

For instance watchpoints for variables, with each having their own bounded overhead: hence

they would be observed with given probability. Another could potentially be triggers for

auto-creating a debug-container, if a condition is reached in the production code or production

service monitoring software

• Evaluate impact on the software development process: As described earlier, we expect live

debugging to change the software development cycle and aid faster bug resolution. In particular

in Chapter 6, we have discussed several applications of Parikshan. These include using existing

debugging methodologies, which can be applied either before a bug happens or after it occurs

(pre and post-facto). An evaluation or survey of real-life users, about what features were useful,

and a quantitative evaluation of Parikshan’s speedup towards bug resolution would further

help understand our framework’s usefulness.
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Appendix A

Active Debugging

Figure A.1: Debugging strategies for offline debugging

A.1 Overview

In this section, we introduce active debugging whereby developers can apply a patch/fix or apply a

test in the debug container. active debugging ensures that any modifications in the debug container

does not lead to a state change in the production container. This will enable the debugger to fix/patch

or run test-cases in the debug-container while ensuring forward progress and in sync with production.

We are inspired from existing perpetual invivo testing frameworks like INVITE [Murphy et al.,
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2009](which also provides partial test-isolation), in the production environment. We currently restrict

fldebugging to patches/and test-cases only bring about local changes, and not global changes in the

application.

A.2 Description

In Figure A, we show the traditional mechanism of testing or validating patch/fixes in an application.

In offline environments, developers apply patches and run the relevant inputs to verify that the patch

works correctly. This is an interactive process, which allows one to verify the result and corrections

before applying it to the production system. Several cycles of this process is required, which may be

followed by staged testing to ensure correctness before applying the update to the production.

Active Debugging (see figure A.2) allows debuggers to apply fixes, modify binaries and apply

hotpatches to applications. The main idea is to do a fork/exec, or parallel execution of an unmodified

application. The unmodified binary continues execution without any change in the input. The

debug-container should ideally mimic the behavior of the production, so as to allow for forward

progress in the application as the debug-container will receive the same input as production. The

target process will be forked at the call of the testing function, the forked process can then be tested,

the input can be transformed, or alternatively the same input can be used to validate any test-condition.

At the end of the execution the test-process output can be checked and killed. The advantage of this

technique is that any tests/fixes can be validated in the run-time environment itself. This reduces the

time to fix and resolve the error. The tests and fixes should have a local impact and should not be

allowed to continue

For Java programs, since there is no fork, we can utilize a JNI call to a simple native C program

which executes the fork. Performing a fork creates a copy-on-write version of the original process,

so that the process running the unit test has its own writable memory area and cannot affect the

in-process memory of the original. Once the test is invoked, the application can continue its normal

execution, while the unit test runs in the other process. Note that the application and the unit test run

in parallel in two processes; the test does not block normal operation of the application after the fork

is performed.

The fork-exec design of test-isolation ensures that the “in-process” memory of the process
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Figure A.2: Debugging Strategies for Active Debugging

execution is effectively isolated. The production/debug containers are completely isolated hence the

test does not impact the production in any way. To ensure further isolation, we can allow the test

fork to only call wrapper libraries which allow write operations in a cloned cow filesystem. This can

be done using a COW supported file-system with cloning functionality which are supported in ZFS

and BTRFS. For instance BTRFS provides a clone operation that atomically creates a copy-on-write

snapshot of a file. By cloning the file system does not create a new link pointing to an existing inode;

instead it creates a new inode that initially shares the same disk blocks with the original file. As a

result cloning works only within the boundaries of the same BTRFS file system, and modifications to

any of the cloned files are not visible to the original file and vice versa. This will of-course mean that

we will constrain the debug/production environment to the File System of our choice. All test-cases

in the debug-container share the test file system.
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Appendix B

Survey of Real World Bugs

In this appendix, we present details of MySQL and Apache bug list, with labels and further subcate-

gorizations. This is a follow up of section 4.4.

B.0.1 Apache Buglist and details

Table B.1 shows the apache table categories list. Apart from the categories mentioned earlier in

section 4.4 the following further categories have been added here as a more detailed categories:

• Feature Request These were bugs that were actually requests for new features or significant

improvements in existing features.

• Uncategorized Bugs categorized as uncategorized were those that we were unable to catego-

rize into any of our categories, mostly because the description was insufficient.

• Skipped These bugs were skipped, either at random or after a look at the short topic summa-

rization.

• Documentation These bugs required further explanation in the documentation

• Build Issue These were more related to build issues

The following table B.2 is the detailed list of apache bugs with the categorization and short

summarization of each bug along with the bug ID.
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Table B.1: Details of bug categories for apache

Category Count

Semantic 37

Feature Request 14

Performance 3

Resource Leak 5

Concurrency 3

Startup/Config 7

Uncategorized 25

Skipped 70

Documentation 14

Build Issue 5

Total 183

Table B.2: Apache Bug List

Bug

ID

Component Summary Category

8117 core Apache stops accepting requests Semantic

21975 mod rewrite mod rewrite RewriteMap from external

program gets “confused”

Concurrency

33398 Other Need to be able to set “scheme” for SSL

offloading

feature requests

37331 Documentation FAQ update: bad hyperlinks Skipped

33110 Other ab is limited to SSL version 2 Skipped

42898 Documentation RewriteRule Pattern is applied to URL

path not to URL

Skipped

35465 core 10038 socket select failed Skipped
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36506 Documentation Documentation “RewriteOptions in-

herit” will also inherit “RewriteEngine

On”

Skipped

43233 Documentation possible typos in some files under ht-

docs/manual/

Skipped

41815 core Apache won’t start if log file too big Startup/Config

39516 mod include Nested Include directives fail, 1.3.35

new regression

Startup/Config

48091 Documentation Search doesn’t work Semantic

46268 mod rewrite Local back-reference in RewriteCond

pattern does not work

Semantic

49484 core Remove custom IE6+ workaround from

config file

feature requests

38177 mod log forensic module use of assert() vs. ap assert()

introduces eprintf() gcc-ism?

Skipped

33824 core binding to an invalid ip address in Linux Startup/Config

46306 core If-Modified-Since: and If-None-Match:

incorrect result

Semantic

49701 Documentation Link to 2.2 Documentation from 1.3

documentation do not work

Skipped

35194 core LimitRequestBody is not considered, if

a Action Handler is called

Skipped

35296 core PATCH: fix ap auth nonce(). Skipped

32635 Documentation Incorrect expression Skipped

39789 Other ab does not handle 304 Not Modified

correctly in a keep-alive connection

Semantic

33466 Documentation Error in french version of the docs for Skipped

34114 Documentation Apache could interleave log entries

when writing to a pipe.

Concurrency
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34181 mod include Limitation(?): cannot allow CGI execs

in current virtualhost only

feature request

46132 core Allow force-no-vary without forcing

HTTP 1.0

feature request

37185 core AddIcon, AddIconByType for Open-

Document format

feature request

15242 mod cgi mod cgi prevents handling of OP-

TIONS request

feature request

24460 Other apache 1.3.29-win32-x86-no src.exe

fails to execute

Skipped

23850 Auth/Access Allow from at times need /32 Semantic

12329 Other mods mod so fails for 1.3.26 (works for

1.3.14): reports modules as garbled

Startup

7195 mod proxy mod proxy removes Set-cookie headers Semantic

9541 Other httpd on Win XP transmit garbage if

element size 32K

Semantic

9790 mod proxy Cookies set in Servlets through proxies Uncategorized

21737 core cgi process defunct Resource Leak

22186 core Solaris kernel 108528-05 causes

Apache to hang

Uncategorized

10470 mod proxy proxy module will not correctly serve

mixed case file names

Semantic

12202 core If-None-Match requests always return

304 with FileETag None directive

Semantic

13120 mod cgi CGI procs defunctioning Uncategorized

10509 core exploit Semantic

14453 mod rewrite mod rewrite external programs dis-

rupted by URLs with newlines in

Semantic

10890 Build if “et“ locale is used, configure fails feature request
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7572 mod proxy mod proxy does not reset timer when

reading from client

Performance

14518 mod rewrite QUERY STRING parts not incorpo-

rated by mod rewrite

Uncategorized

39490 core Wildcards (*) are ignored in Include di-

rective since 1.3.35

Startup/Config

10073 core upgrade from 1.3.24 to 1.3.26 breaks

include directive

Startup/Config

10453 Auth/Access Backward-compatible GET requests

broken in 1.3.26

Semantic

9647 mod proxy win 1.3.24 broke mod proxy when con-

necting to aspx page on IIS

Uncategorized

13053 Build build of apache fails regardless of build-

ing static or shared

Skipped

11668 mod proxy mod proxy & mod rewite generate a

invalid http response

Performance

14887 Build Empty Makefile when building (./con-

figure)

Build Issue

10240 mod proxy mod proxy sending wrong answer for

requests to cached partial content

Semantic

9181 mod headers Unable to set headers on non-2XX re-

sponses.

feature request

7492 mod rewrite Rewritemap mismerges paths (c:/ not

recognized as rooted)

Uncategorized

9497 mod proxy mod proxy does not maintain the re-

quest field (old bug #6841)

Semantic

27896 core Access violation in Apache with long

directory path

Uncategorized
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31858 Auth/Access regular expression matching broken on

amd64

Semantic

28880 Documentation Backreference in RedirectMatch always

inserts $1 at the end of destination url

Semantic

10128 mod proxy mod proxy, no-cache and 304 Semantic

31911 mod rewrite RewriteRule problem in 1.3.32 Semantic

31344 core mod rewrite PATH INFO issue in

1.3.31 - not in 1.3.29

Semantic

30627 core possible bug in handling ALARM sig-

nals on Solaris 9

Concurrency

9365 mod proxy Change in behaviour of ProxyPass and

ProxyPassReverse

Semantic

28218 core errors in regular expressions for Loca-

tionMatch cause silent failures

Uncategorized

25036 Documentation man pages for ab and apachectl say sec-

tion number (1) not (8)

Documentation

10961 core Redirect inside of Directory XYZ does

not pass environment back to the

browser

Semantic

29517 Documentation fix ’en-uk’ to read ’en-gb’ Documentation

18337 Documentation AddModule order important within

apache configure file

feature request

8176 core logic error in reclaim child processes

function called during shutdown

Resource Leak

37798 mod mime Add quite popular CHM extension to

mime.types

feature request

17897 core mod cgi broken on acl based file sys-

tems

Uncategorized
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13290 mod cgi unknown extensions do not reset Ad-

dHandler matches

Documentation

29667 mod proxy Proxy detects local URI as remote for

vhosts not running on default port

Uncategorized

10449 Other suexec allows environment variables

not in the safe list

feature request

28293 Other Wrong filesize in directory listing feature request

9076 Auth/Access ’satisfy any’ without AuthType set

causes 500

Semantic

14600 core Apache does not show or send files

mounted from a NetWare server.

Uncategorized

27811 Documentation SSI tutorial has mystery reference to

“last article”

Documentation

16661 Other mods use of strstr() in spot cookie() mis-

identifies cookies

Uncategorized

30920 core Digest authentication via mod digest no

longer works in 1.3.31.

Uncategorized

8449 Documentation SSI howto documentation bug: “ctime”

should be “strftime”

Documentation

26079 mod mime RealMedia files reported as RealAudio Semantic

10156 Build Apache HTTPD 1.3 needs to learn

about Caldera OpenUNIX 8

Startup/Config

26462 mod rewrite RewriteMap urlmap txt of same age get

confused between vhosts

Semantic

17564 Other mods Somtimes mod negotiation fails select

right variant

Uncategorized

19512 Auth/Access AllowOverride doesn’t work in Loca-

tion, but there’s no error

Uncategorized
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14629 core Listen with IP address, no port, uses

first octet as port

Uncategorized

9446 Documentation Cosmetical fix of httpd.conf comments Documentation

30996 Documentation Documentation for mod auth digest

needs update (compatible browsers)

Documentation

10092 Build Windows Installer 2.0 not compatable

with 1.3.26 msi

Build Issue

13351 Other FancyIndexing-generated HTML-code

not valid as HTML 4.01

Uncategorized

16435 Documentation TRACE not working in Limit Documentation

22276 core segfault in new connection with un-

usual vhost config

Security/Semantic

10096 Documentation Module identifier for mod actions incor-

rect

Uncategorized

16908 Other mods mod mime magic incorrectly handles

unrecognized files

Uncategorized

11988 Documentation force-response-1.0 ingored if request

uses HTTP/1.1

Documentation

14976 mod proxy ProxyPass segfault on ftp:// urls Semantic

29577 core 1.3.31 does no longer discard POST

data on denied access

Semantic

28876 Documentation RLimit directives are working in .htac-

cess file.

Documentation

32097 Build Wrong compilation flags when build on

not yet released FreeBSD 6.0

Build Issue

8329 Other mods mime magic gives 500 and no error log

on Microsoft .ANI cursor files

Uncategorized

10259 core charset always being added to Content-

Type on redirects

Uncategorized
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14648 mod rewrite mod rewrite does not proxy included

requests

Semantic

23871 core ap SHA1 broken on 64-bit Uncategorized

16937 Auth/Access Broken(?) 401 response from Apache

1.3.27 when digest auth required

Semantic

16013 mod autoindex Fooling mod autoindex + IndexIgnore Semantic

22805 core file descriptors are erroneously closed Resource Leak

15577 Documentation bug in auth how-to perl code Documentation

17720 Other please add application/ogg mimetype feature request

7180 Documentation Broken link in the documentation at

mod/core.html

Documentation

21443 Other mods compilation of mod auth db.c fails for

Berkeley DB version 4

Build Issue

29313 mod log forensic mod log forensic cause segmentation

faults

Skipped

20127 core PID file paths different on starting and

stopping using apachectl

Skipped

15011 core Apache processes not timing out on So-

laris 8

Skipped

24165 Other mods mod access docs SetEnvIf uses regex Semantic

18631 mod proxy Empty header fix rolled out Uncategorized

16984 Build suexec.c error Build Issue

12617 mod proxy Incorrect comparisons in support/ro-

tatelogs.c

Semantic

29403 Documentation foo.fr.html, language en – should be

fr

Documentation

12072 core Apache hangs when run with ssl-

support on 64bit Linux for zSeries

Uncategorized
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8037 Documentation documentation of Script directive does

not define arguments well enough

Documentation

18634 mod proxy Expediate Pragma:no-cache rolled out Skipped

27266 Documentation ErrorHeader headers being added to 200

code responses

Skipped

12386 Documentation CustomLog: piping to gzip does not

work as documented

Skipped

10561 core Possible over-zealous protocol check-

ing

Skipped

7234 Other mods RewriteMap broken Skipped

7796 Build Support XHTML media type (RFC

3236) in default install

Skipped

12074 Build Compilation fails due to a Isinf not

found

Skipped

28491 core Largefiles with Partial Content and

Content-Range Header

Skipped

10186 core HTTP-Version in request line is pre-

sumed case sensitive

Semantic

30877 Auth/Access htpasswd clears passwd file on Sun

when /var/tmp is full

Semantic

9889 Other apache problem under OpenBSD 3.1 lat-

est stable.

Skipped

23472 core httpd.conf-dist has the wrong language

code and MIME charset for Korean

Skipped

27501 Documentation Incorrect credit and link for “Getting

More out of Apache” tutorial

Skipped

12395 mod rewrite “RewriteEngine off” forbidden if “Op-

tions -FollowSymLinks”

Skipped
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24821 mod cgi memory handling very slow if cgi-script

needs big chunk of memory.

Resource Leak

12704 Documentation Error in AcceptMutex description Skipped

13683 Documentation Virtual host missing from RemoveType

context

Skipped

9424 Documentation Typo in the Auth Howto Skipped

12706 Build test char.h doesn’t get created on fast

build machine

Skipped

10980 Documentation Trivial documentation error (anchor) Skipped

16398 Documentation Mozilla does support Digest auth now Skipped

9977 Other suexec uses strerror(), which is not in

SunOS4

Skipped

22194 core .conf directory confuses (and crashes)

httpd.

Skipped

27812 Documentation duplicate ssi.html.html shows up in

search results

Skipped

12722 Documentation Very minor issue with the description

of the Run Time Config Cmd: Header

Skipped

16795 Documentation ErrorDocument does not work in Inter-

net Explorer

Skipped

8889 Documentation Broken links in

http://httpd.apache.org/dev/apidoc/

Skipped

14442 Documentation Satisfy example wrong Skipped

12822 Documentation documentation suggests insecure file

permissions

Skipped

18628 mod proxy Obsolete comment re-committed Skipped

7422 Build –with-layout=RedHat is not current Skipped

8927 Documentation DefaultType defaults to “text/plain” not

to “text/html” as per the documentation

Skipped
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20763 Documentation suggestion for docs Skipped

17006 Documentation original and rewritten URLs transposed Skipped

29409 Documentation Include Wildcard added in 1.3.27 Skipped

12966 Documentation typo in FilesMatch syntax in french doc-

umentation

Skipped

10038 Other ab benchmaker hangs on 10K https

URLs with keepalive

Skipped

17866 core Bogus: “cannot use a full URL in a 401

ErrorDocument directive” ?

Semantic

7252 Documentation Should fopen() in this example really be

ap pfopen ()?

Skipped

22061 Documentation About alias mapping the / Skipped

9012 Build apxs ignores IfDefined ... tags when

placing LoadModule lines

Skipped

11626 Documentation Bug report URL incorect Skipped

26326 Other Issue in the Redirect clause feature request

27542 mod proxy multiple-homed Web hosts - con re-

fused to first IP doesn’t fall through to

second

Semantic

12712 core [PATCH] Include conf.d/*.conf Uncategorized

25268 Other video/vnd.mpegurl mxu m4u in

mime.types and mime.types-dist

Skipped

24442 core UseCanonical enhancement Skipped

9648 Documentation User CGI FAQ should mention suexec

problem

Skipped

32070 Other RFE: add more bugzilla Platform op-

tions (AMD64, IA64)

Skipped

14358 Other rotatelogs using TZ settings Skipped

25772 mod rewrite REMOTE PORT Skipped
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27023 mod proxy Cookie could not delivered if the cookie

made before proxy module.

Skipped

9537 core Additional ServerTokens Skipped

29640 core Changes to apache core to allow sorted

array elements

Skipped

23902 core Add .dmg to application/octet-stream in

mime.types

Skipped

31483 mod mime add svgz in mime.types file Skipped

22529 Documentation RewriteRule problem when the URI is

the same as the document root

Skipped

12695 Documentation FD SIZESET info as requested Skipped

17462 mod rewrite Prevent mod rewrite from deadlooping Performance

7628 Other daemontools patch no longer applies

cleanly to 1.3.24

Skipped

19339 mod cgi stdin on CGI opened in text mode Skipped

35023 mod rewrite mod rewrite memory leak Resource Leak

Table B.3: Categories and count of mysql bugs

Category Count

Semantic 73

Performance 10

Resource-Leak 6

Concurrency 7

Startup/Config 2

Fault Tolerance 2

Replication 2
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B.0.2 MySQL Buglist and details

Table B.3 shows the mysql table categories list. Apart from the categories mentioned earlier in

section 4.4 the following further categories have been added here as a more detailed categories:

• Fault Tolerance Bugs in mysql cluster deployment related to fault tolerance

• Replication Bug in mysql cluster deployment related to replication

Below is a table B.4 with a list of all the bugs and their categories, all bugs which have not been

categorized were skipped at random or because they could not be categorized.

Table B.4: MySQL buglist

ID Summary Category

71156 FTBFS: ft2build.h: No such file or directory Build

71155 Unit test test promote is failing

71154 Can’t see full Model Name in Workbench 6 Home

71149 Assertion fails in create tmp field Semantic

71148 I believe this is nonsense

71147 Where is the list?

71141 Invisible schema list on dark GTK theme

71131 Poor error message in CallableStatement.java

71129 Binary data output from XML-RPC calls

71128 Command “mysqlfabric manage start” hangs on Win-

dows

71127 Checkpoint routine can lead to deadlock

71126 Command “mysqlfabric” not recognized on Win-

dows platform

71125 A server must belong to a single group

71124 callproc function with bytes parameters

71121 Postgres To MySQL migration failed

71119 Workbench crashes and quits after first application

load
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71118 MEM agent: do not report a missing master.info file

if using TABLE replication

71113 Executable bit set for example config files

71112 Various test suite files have execute bit set but aren’t

executable

71109 Documentation for attributes as part of

COM CHANGE USER is missing

71106 Label for cancel button is not displayed correctly

71104 error on database start activate crashing recovery. startup

71103 Wrong syntax is used as example in the manual

71102 Unknown column ’no’ in ’field list’ in

MySql.Data.Entity Migration column rename

71097 Wrong results for a simple query with GROUP BY semantic

71095 Wrong results with PARTITION BY LIST

COLUMNS()

semantic

71094 ssl.cmake related warnings

71092 InnoDB FTS introduced new mutex sync level in

5.6.15, broke UNIV SYNC DEBUG

concurrency

71089 CMake warning when generating Makefile

71084 Wrong java.sql.Date stored if client and server time

zones differ

semantic

71076 st intersects works improperly semantic

71072 Please, make sure Launchpad sources are updated

before announcing release

71071 MySQL installer hangs on installati on (community

editions)

71070 kill of truncate table will lead to binary log written

while rows remains

semantic

71054 ‘HELP SHOW‘ still contains removed statements
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71050 json extract returning same column twice if key

names are not fully distinct.

semantic

71047 shutdown hang if semisync is enabled and slave abort replication

71045 Wrong default value is displayed for “thread stack”

option on 64-bit OS

71038 Add an option for custom collations detection performance

71037 can not start mysql when no Previous gtids log event

in the binlog

71036 Error on changing varchar(5000) to text

71032 !NULL and NOT NULL

71029 TRUNCATE command still active

71028 error result when “count + distinct + case when” need

merge walk

semantic

71025 Docs for mysqldump’s –single-transaction option are

misleading in 5.5/5.6

71022 mysqldbcompare fails check on same view on differ-

ent schema name

semantic

71017 mysqldump creates useless metadata locks semantic

71015 Typo in manual (mutxes- mutexes)

71014 two many times of memset decreate the performance

under heavy insert

resource-leak

71010 sql/sql resolver.cc refers to partition engine fields

when building without it

71004 Only ONE table from a database won’t import semantic

71003 Please refresh and remove events after closing them

70993 bad x on close on MySQL-workbench

70991 Manual seems to recommend IDEMPOTENT mode

for all cases of master-master
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70983 Assertion ‘0’ fails on creating a temporary table via

trigger

semantic

70982 Table created as INNODB, dropped, recreated as

myISAM, subsequent select fails

70978 Can’t drop multiple views

70977 MySQL Workbench crashes very very often when

you try to rename index or fk

semantic

70972 Multiple Selection Bug

70970 Cursor goes to the end of table’s comment field if it’s

already populated

70969 Shadow declaration of OperationNotSupportedEx-

ception in RowDataDynamic

70967 Crashes on right click

70965 Togglable Sidebar/panels buttons wrongly selected

at startup

70954 Fabric should use a better default TCP port

70952 MYSQLTEST MAN PAGE CONTAINS INTER-

NAL DIRECTORY NAME

70946 Driver Returns Wrong Length for Output Parameter

Streams

70942 accounts table shows NULL users and hosts

70941 Invalid SQL query when eager loading two nested

collections

semantic

70939 psi keys were incorrectly passed to function

set psi keys

70936 innochecksum.exe cannot handle =4G files (and

prints wrong error message)

70934 I typed “dbssc qc mysql56” and saw the following

information
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70932 MySQL Workbench Patches ( build fixes, removal of

deprecated glib functions )

70930 count distinct get error result semantic

70927 Connector/J COM CHANGE USER handling is bro-

ken

semantic

70925 Importing tables with GUID to excel - exception semantic

70924 Server object does not have a clean design to repre-

sent scaling out servers

70922 MySQL binlog error causing slave replication to exit replication

70920 Mysql Workbench repeatdly crashes at startup

70912 Autocomplete won’t go away sometimes

70906 when the mysql server is running, i start it again,the

pid file will be deleted

70904 can’t create a new view in the model

70903 Forward Engineer SQL Script disregards “Do Not

Create Users” instruction

70899 unnecessary buf flush list() during recovery performance

70898 Manual declares size in KB valid for inn-

odb data file path, but it does not work

70896 MySQL Workbench does not export stored routines

70888 NullReferenceException when try to save entity with

TINYINT or BIGINT as PK

70885 Mouse flickering between mouse pointer and “Text

Cursor”

70879 Error Code: 1785 when executing simple UPDATE

statement

70878 mysql-replication-listener compiler warnings patch

70873 No (online) documentation – please always install

“doclib” module.
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70872 segmentation fault (crash) on adding new table to

empty EER diagram

70867 Wrong OS error number reported in error log during

failure at startup

70866 sql/rpl slave.cc

70860 –tc-heuristic-recover option values are broken

70859 -DWITH EXAMPLE STORAGE ENGINE=1 is ig-

nored

semantic

70855 MySQL Workbench CE 6.0.7 crashes when launch-

ing

70854 Tc log page size should be unflushable or server

crashes if 2 XA SEs installed

semantic

70852 Poor grammar in docs

70848 Reduce the work inside critical section in my fopen()

and my register filename()

performance

70841 When picking colors in EER Diagram for layers and

tables MySQL Workbench crashes

70839 JSON VALID allows to have two elements with the

same key

70836 ALTER IGNORE TABLE behavior

70835 Incorrect SQLException subclass thrown for query

interrupted

semantic

70830 Coverity analysis results and patches

70828 UNION syntax missing required parentheses

70819 SHOW ENGINE INNODB MUTEX does NOT work

with timed mutex properly

semantic

70817 Inconsistent behaviour of NULL with binary strings

70814 /etc/init.d/mysql does not recognize pid-file under

[mysqld safe] in my.cnf
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70810 missing “event” permission in Users and Privileges

manager

70795 Entity Framework migration with Foreign Key fails

70789 Wrong verb

70784 Adjust documentation and possibly defaults for sync

info

70780 Creating custom graphs documentation error in

MySQL Enterprise Monitor 3.0

70776 semi-sync may segfault when turned off

70772 Mysql workbench crashes when opening a connec-

tion

70770 Wrong/Obsolete product names on the MySQL Yum

repository download page

70768 Persistent optimizer statistics often causes

LOCK open stalls

concurrency

70763 declare handler demo should show warning

70762 Yum installation documentation uses incorrect prod-

uct name/branding

70759 NDB API Example programs do not compile

70757 InnoDB Memcached leaks memory if inn-

odb api enable binlog = 1

resource-leak

70753 MySQLWorkBench crashes upon launch on Mac OS

10.8.4

70747 All round buggy table “Inserts”

70745 Add authentication plugin info to mysqluserclone

70744 SHOW GRANTS should indicate a authentication

plugin

70743 Instruction for pam authentication plugin should en-

able cleartext plugin
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70741 InnoDB background stats thread is not properly doc-

umented

70738 PAM configuration for pam authentication plugin

doesn’t work

70733 Partition examples should include a primary key

70729 InnoDB Buffer Pool Usage screen text should be

modified

70728 InnoDB Buffer Pool Usage Graph doc does not re-

flect actual behavior

70727 updating same row multiple times not working

70722 ’ The method or operation is not implemented. ’

when using LINQ with OrderBy.

70711 mysqlbinlog prints invalid SQL from relay logs when

GTID is enabled

semantic

70710 The login-path option is missing from mysql(1) man-

page

70705 Performance impact of row constructors is not prop-

erly documented

70701 DatabaseMetaData.getSQLKeywords() doesn’t

match MySQL 5.6 reserved words

70696 Restriction on FK parents being Unique key not doc-

umented

70695 MySQL Connections non visible but clickable

70694 MYSQLFABRIC IS NOT EXECUTABLE ON WIN-

DOWS

70693 agent looking in the wrong place for the master de-

tails

70691 MEM3 agent seems to populate

mysql.inventory.name with ’hostId’ not ’hostid’
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70688 ndbinfo offline variable undocumented

70685 incorrectly printed binlog dump information

70683 The description is wrong for –server-public-key-

path=file name

70682 The description for –version-check in the summary

table is wrong

70672 MySQL-devel package missing incluse/mysql/hash.h

70671 Wrong UI for ENUM type on Model User defined

types

70669 Slave can’t continue replication after master’s crash

recovery

fault-tolerance

70668 Installation instructions for mono should mention

dmcs

70664 mysql embedded mysql stmt execute return “mal-

formed communication packet” error

semantic

70662 Memory leak using 5.2.6 ODBC connector resource-leak

70658 Add description of options that control optimizer

trace

70657 SELECT DISTINCT...GROUP BY returns wrong

results in some cases

semantic

70648 mysqldbcopy copy routines after view semantic

70647 -DWITH DEBUG=1 has more effects than -

DCMAKE BUILD TYPE=Debug

70642 Bad memory access when get out params. semantic

70641 5.6 partitions use much more memory than 5.1 semantic

70640 –slave-skip-errors won’t skip missing database/table

70639 THR LOCK mutex is used before being initialized

70634 ’make test’ does not work



APPENDIX B. SURVEY OF REAL WORLD BUGS 191

70628 Wrong instrumentation interface for

mysql cond timedwait

70622 error result when use between...and againest bigint

unsigned

semantic

70616 planet.mysql.com removing posts

70614 Documentation typo

70608 This query returns a row in 5.5 but not 5.6 or current

5.7

semantic

70602 .Net connector does not add auto increment to bigint

columns

70601 Dashboard: startup can be very slow, not clear when

initialisation complete

70600 monitor shutdown does not give enough time to shut-

down tomcat

70596 ProgrammingError: Character set ’utf8mb4’ unsup-

ported.

70595 MySQL Installer 1.3 can’t download Server 5.1

70591 Coverity analysis results and patches

70590 Installation of MySql for Visual Studio Failed

70588 Index merge used on partitionned table can return

wrong result set

semantic

70583 INSERT ON DUPLICATE KEY UPDATE failing

after MySQL 5.6 upgrade.

70577 Read/Write mutexes on Binlog delegate classes are

not counted on perf schema

70574 JSON MERGE treats document without opening

bracket as valid

70573 Typo in README for JSON MERGE
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70570 JSON VALID allows t̆wo-hex-digit while standard

allows only f̆our-hex-digit

70569 JSON VALID allows mixed case in the keyword

names

70568 JSON VALID treats invalid values as valid

70567 JSON VALID is too strict for some of objects

70564 future group master log pos not set properly

70553 EXPLAIN UPDATE shows “Using join buffer” while

it is not used

70552 host cache size value is ignored

70550 Data mismatch between C NDB API and MySQL

CLI.

70547 AccessViolationException when using GetSchema

API

70545 Missing support for read-only transactions

70542 MySQL does not compile on OSX 10.9 GM

70537 No users created under MySQL system database for

RPM based installation

70536 can’t use LOGICAL CLOCK if gtid is enabled

70530 dashboard: Improve logging of failed login attempts

70529 executemany() INSERT INTO fails w/o VALUES

(e.g. INSERT .. SELECT)

semantic

70523 logging of the MEM agent is very verbose and does

not give functional info

70519 Workbench omitting new lines

70518 Null reference exception when drawing layer under

tables

70516 Conditional include of sys/resource.h uses incorrect

guard define
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70515 Workbench cannot handle fractional timestamp

70512 Windows source installation fails in trying to use /etc

70507 MEM should treat a rebuilt MySQL server as a con-

tinuation of the previous one

70506 Routine Groups “expanded” variable not honoured

70505 clarify default 18085 port usage and bind locally if

no remote access needed

70504 service manager user is configured with unnecessary

access to bundled server

70502 Documentation on required MySQL grants is not

very cleaer

70494 st distance() function not documented

70488 Eine externe Komponente hat eine Ausnahme aus-

gelst

70486 When using json replace(), ’}’ of the end disappear.

70483 Server gets segmentation fault if compiled -O2

70482 Trying to create a FK relationship using InnoDB

tables the EER incorrectly adds

semantic

70451 Password Validation Plugin doesn’t play nice with

the GRANT and REVOKE commads

70450 Manual does NOT list all kinds of inefficient queries

over FEDERATED tables

70443 mysql client program ignores my.ini settings

70439 SQL Result Set can no longer be edited (Invalid “read

only” status)

70438 “Omit Schema Qualifier” option doesn’t apply to

GRANT statements

70436 Incorrect mapping of windows timezone to Olson

timezone
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70430 Race condition between purge coordinator and Inn-

oDB monitor crash on shutdown

70429 list handling incorrect in mysql prune stmt list() resource-leak

70427 when using multi-threaded slave, gtid executed does

not report the latest transa

70426 mismatch between slave worker info and replication

70423 performance schema.replication execute status by worker

wrong thread ID

semantic

70422 ODBC 5.2.5 dmg installer fails on OSX 10.8.5

70421 MySQL Workbench Action Output doesn’t auto

scroll

70420 are these uses of BTR MODIFY TREE needed?

70418 “New” MSI installer - platform confusion

70417 rw lock x lock func nowait() calls

os thread get curr id() mostly needlessly

concurrency

70414 redundant code in ReplSemiSyncMas-

ter::updateSyncHeader

70412 Windows Installer: default configuration file error -

innodb autoextend encremen

70411 Choosing “Copy Query for Matches” on “Search

Table Data” result row causes crash

70410 DDL queries increases rpl semi sync master yes tx

by a value of 2

70409 MySqlSessionStateStore : exception “Duplicate en-

try”

70408 Mysql installer: convert to commercial license

70403 No useful error message when memcached fails to

start due to lack of memory

resource-leak
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70402 new deprecation warnings introduce unwanted per-

formance degradation side-effect

performance

70398 MySQL Installer installs service with ’forward

slashes’ in registry

70397 SHOW ENGINE PERFORMANCE SCHEMA STA-

TUS doesn’t work in Workbench

70393 MySQL JSON UDFs: json extract only accepts

string arguments

70392 MySQL JSON UDFs binary is called

libmy json udf.so but DDL uses libmy json.so

70391 uninstall and install semi-sync plugin causes slaves

to break

70390 have csv and have partitioning documentation is

swapped

70388 Unable to change font in query result window

70381 Setting null in selection the various fields in grid data

result.

70377 fields of type TIME(3) don’t read milliseconds

70369 Undocummented behavior of InnoDB tables using

CHAR data type

70366 Trigger editor reverts last changes when trigger editor

tab looses focus

70365 Cannot save empty script in Workbench

70360 an independent instance with semisync enabled still

need ack from slave

semantic

70355 External Component Has Thrown An Exception

70351 ALTER TABLE ADD CONSTRAINT xxx FOR-

EIGN KEY adds two constraints

semantic
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70341 Key lengths lead to incomplete result sets; unhinted

scans prefer such indexes

70339 mysqlindexcheck not displaying best/worst report for

tables with no data

semantic

70338 autocomplete popup window freezes on screen

70333 InnoDB Fulltext search doesn’t find records when

savepoints are involved

70332 Crash when failing to establish a database connection

via SSH

70330 Typo in mysqlfrm manual entry

70329 excessive memory usage when querying INFORMA-

TION SCHEMA.INNODB FT INDEX

semantic

70327 Assersion error when setting future binlog file/pos

with semisync

70325 Query history not restored after restart of MySQL

Workbench

70324 AttributeError: str object has no attribute decode

70323 Workbench unhandled exception if audit.log file miss-

ing

70313 Missing delimiter ; after routine in Workbench for-

ward engeneer

70311 fts: Duplicate FTS DOC ID value on table / Cannot

find index FTS DOC ID INDEX in

concurrency

70310 “Forward Engineer - SQL Create Script” bug with

privileges

70309 Crash on start

70308 RACE CONDITION CAN CAUSE MYSQLD TO

REMOVE SOCKET FILE ERRANTLY
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70307 Another deadlock on FLUSH TABLES WITH

READ LOCK + SHOW SLAVE STATUS

concurrency

70298 [ERROR] InnoDB: Failed to set O DIRECT on file semantic

70290 Exception Populated : Unknown system variable

’transaction’

semantic

70284 Workbench 6.0.7.1 Crashes after – New Model – Add

New Diagram

70282 MySQL Notifier opens and gives an error message

“High Severity Error”

70281 sql safe updates documentation needs improvement

70279 incomplete source archive

70277 last argument of LOAD DATA ... SET ... statement

repeated twice in binlog

70274 Out-of-place stanza in docs

70271 weird errors with CHARSET=gbk

70262 Workbench 6 crashes down while starting up

70260 Table disappears when ALTERing with foreign key

checks off

semantic

70258 Requirement for PROCESS privilege not docu-

mented

70257 Could not change a trigger name

70246 workbench synchronize and reverse engineer is not

working

70244 “Error getting DDL for object” on alter table with

triggers

70241 innodb metrics::INDEX MERGE defined but not set semantic

70236 Use count: Wrong count for key at 0x27547278, 3

should be 4

70232 “Search table data” function fails
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70229 mysql workbench will not start

“

70228

Is buf LRU free page() really supposed to make non-

zip block sticky at the end?

70226 FTS: InnoDB: Trying to TRUNCATE a missing in-

dex of table

semantic

70221 Scrolling up after execute

70220 Grouping with a view may report ’Invalid use of

group function’

70218 Semisync master plugin with many slaves causes

plugin lock mutex contentions

performance

70217 Internal program error (failed ndbrequire) caused a

Data Node to Shutdown

70216 Unnecessary overhead from persistent adaptive hash

index latches

70214 Record in index was not found on rollback, trying to

insert

semantic

70213 INFORMATION SCHEMA.innodb metrics docu-

mentation incomplete

70209 Incorrect description of inn-

odb max dirty pages pct lwm and inn-

odb flushing avg

70207 internal doc is not clear

70206 internal doc error

70201 WB Hangs In Headless Mode If Opening Corrupt

File

70193 Crashing when opening another model file when one

is already open

70191 Paper size when printing
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70189 Alter table on large table produces error invalid

map/setT iterator

70186 MySql Workbench 6.0 home page missing on startup

– no Administer Server section

70179 Workbench 6.0 CE keeps crashing upon opening

70178 InnoDB FTS Information Schema plugins cannot be

loaded when built as Shared Lib

70174 unhandled exception TreeNodeRef set int for client

connections with large time

70172 trx create() and trx free() are called at every mem-

cached get request

performance

70170 Database with dot “.” in name gets split.

70168 MySQL Community Server 5.6 Installer for windows

crash on 64 bits Win 7 Prof

70167 Impossible to disable MASTER AUTO POSITION

with gtid mode=OFF

70163 Application freezes up to 10 seconds

70159 Debug Routine throw data too long for column ’pvar-

name’ at row 1 error

semantic

70158 select error sqlstate -37000 –used powerbuilder12.5

and Mysql ODBC 5.2.4

70152 mysql upgrade fails on a server with disabled Inn-

oDB

70150 Incorrectly reports the active configuration file

70140 Reentrant call exception in Workbench when insert-

ing new row

70139 Performance of “ALTER TABLE...” queries performance

70138 New-line auto-indent
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70132 Execution of SHOW and DESCRIBE statements

doesn’t affect “Queries per Second”

70129 ROW FORMAT=COMPACT issues

70127 mysql-workbench 5.2.47 Segfaults All Over The

Place

70125 Timestamp and datetime with microseconds still not

supported in MWB 6.0

70124 Timestamp and datetimes self-incompatible during

replication

70123 MySQL utilities not available for OS X

70122 Model looses typed data entry when switching tabs

to query tool

70119 Mouse cursor flashes in SQL Editor

70118 ifconfig is deprecated in favor of iproute on modern

Linux

70117 Syntax error in MySQL 5.5, 5.6, 5.7 Reference Man-

ual

70116 Workbench SQL Additons pane blank/missing key-

words

70113 Memory leak in SQLPrepare with queries that use

parameters

resource-leak

70107 Workbench

70103 MySQL Connector Python 1.0.10 Download URL

404

70100 Error in C# example code

70097 “Duplicate” button in Manage Server Connections

does not work

70095 export - Alter table - doesnt show up
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70089 Error msg when check/uncheck Schema on “Selec-

tion Database Objects to Import”

70087 InnoDB can not use the doublewrite buffer properly fault-tolerance

70074 mysql secure installation only works within $HOME

70072 Copy paste fields from one table to another in model-

ing

70071 Contradicting statements about OS support for win-

dows authentication plugin

70070 List of supported Windows OS’es not updated

70066 Can’t Open Workbench 6.0.6 on OS X 10.8.4 after

Upgrade from 5.2.47

70063 create table is slower in 5.6

70062 sql mode option file cannot set to null

70059 EER modelling - can’t update Routine Groups

70058 Getting mysqld –help as root exits with 1

70057 Option Fields are cut because of GUI problem

70055 Expiration time ignored

70050 Community MySQL utilities includes both commer-

cial and GPL readme files

70049 Commercial Workbench download links to commu-

nity utilities

70046 Typo: boostrap

70041 Cannot use Chinese character in the connection string

for the database

semantic

70040 Cannot create database with Chinese characters semantic

70039 Fix for bug #20964 was a breaking change

70038 Wrong select count distinct with a field included in

two-column unique key

semantic

70035 Save snapshot of open editors on close doesn’t work
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70034 version information mismatch in README-

innodb memcached

semantic

70033 Wrong build information on innodb/memcached

70031 SQL File Names are not shown in WB on Mac

70028 P S threads.INSTRUMENTED not set according to

setup actors

70026 Auto reconnect does not work with 5.6 libmysqlclient

70025 Update on P S setup consumers and threads through

JOIN only updates first row

70024 MySQL Workbench 6.0.6 Setup crashes on Windows

Server 2012 Standard x64

70022 MySQL workbench loses connections list

70021 Poor execution of a plan with unnecessary “range

checked for each record”

performance

70018 PFS Overhead on frequent connect/disconnect performance

70016 Workbench crashes when right-clicking on a function

70014 MySQL crashes on explain with JSON formatting

(debug builds)

semantic

70009 Can’t install mysql 5.6 on Oracle Linux 6.4

70007 Missing tables in InnoDB dictionary cause assertion

and restart of MySQL

semantic

70005 MySQL 5.5.33 issue with section 14.4.4.3. Identify-

ing the File Format in Use

70004 Workbench 6.0.6 freezes in Server Status Tab

70003 MySQL Admin ’Options Files’ has duplicated items,

new Defaults needs adjusts

70001 Partitioned tables do not use ICP - severe perfor-

mance loss after partitioning

semantic

69995 Wrong bug# in changelog item ...
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69993 innodb tries to access tablespace that does not exist

or is just being dropped

69990 CREATE TIME and UPDATE TIME are wrong for

partitioned tables

semantic

69989 wrong DBUG ENTER string in

THD::increment questions counter

69982 STATS SAMPLE PAGES clause is not documented

in the manual

69972 INSERT Rows with Unmatched Value on LIST Par-

titionin Results in No Rows Inserted

69969 Failing assertion: prebuilt-trx-conc state == 1 from

subselect

concurrency

69965 Add new table, right-click causes error

69958 “AUTO INCREMENT” is not a serial number.

69957 “AUTO INCREMENT” is not a serial number.

69956 Attaching a MySQL table in MS Access fails if the

table has an umlaut in name

semantic

69954 4-way deadlock: zombies, purging binlogs, show

processlist, show binlogs

concurrency

69950 Visual Studio 2010 crashes when reading rows from

any table in Server Explorer

semantic

69943 Transactions skipped on slave after “stop/start slave”

using GTID replication

semantic

69941 Inaccurate doc in reference manual for SSL perfor-

mance

69938 ‘Got temporary error 899 ’Rowid already allocated’

from NDBCLUSTER’

semantic

69937 Cannot delete index that belongs to foreign key when

another index exists
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69934 Cannot edit default schema privileges for test and

test %

69933 workbench crashes

69932 Fulltext search using words with apostrophe (’) does

not work on INNODB tables

semantic

69928 “statement/com” event meaning is unclear semantic

69922 Unknown column Extent1... semantic

69919 Surface Pro - Modeling diagrams crash system on

open

69918 Please add ’bit depth’ to version string

69915 statement/com/Query counter doesn’t increment semantic

69913 temporary-files.html ignores –slave-load-tmpdir

69911 MEM page for “Editing Built-in Rules” has incorrect

image

69908 MyISAM FTS queries with LIMIT clause, but no

WHERE clause, return too few rows

semantic

69907 Error(1030): Got error -1 from storage engine semantic

69903 Stack corruption in vio io wait on Mac OS X semantic

69902 slave asserts after 5.6 upgrade

69900 Workbench hangs when trying to open context menu

for a column in the live edit

69899 GRANT fails to set empty password for existing user semantic

69898 change master() invokes ha innobase::truncate() in a

DML transaction

69895 mysql 5.6.13 i386 ships with 64bit libraries

69894 Is MySQL 5.1.71 released?

69892 innodb stats interferes with innodb force recovery

and drop/create tables

69884 Test for bug 69883
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69882 Cannot decrease auto increment value even when

table is empty

semantic

69878 More foolish installer issues .. SIGH

69876 Unable to get the database encoded name in MySQL

5.6

69873 Replication stop with “Error in Xid log event: Com-

mit could not be completed”

69865 Wrong default MESSAGE TEXT values for SIG-

NALs are listed in the manual

69864 Need to add a lock to access connections member in

ENV structure

69861 LAST INSERT ID is replicated incorrectly if repli-

cation filters are used

semantic

69855 Official way to build with Valgrind (documentation)

69854 Gmock download extraction issue

69852 cmake build instructions errors

69850 “Close other tabs” function does not close all tabs

69848 mysql 5.6 slave out of memory error ?

69847 btr cur optimistic update() incorrectly documented

to allow thr == NULL arg

69846 ICP does not work on UNIQUE indexes

69844 Problem with scripts/mysql install db –user=mysql

69841 SELECT COUNT(DISTINCT a,b) incorrectly

counts rows containing NULL

semantic

69840 SQL Query Duration Appears incorrect

69833 Bad interaction between MIN/MAX and “HAVING

SUM(DISTINCT)”: wrong results

semantic

69832 Replicated Servers - ConnectionString Breaking

Change
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69830 MySQL RPM no longer provides lower case tags

69829 When moving a table into a Layer the position of

various tables reset to 0,0

69814 Failure to issue queries (selects) multiple times using

OpenJpa

semantic

69811 Unable to repair replication after Lost Events inci-

dent using GTID

69808 Error when opening ASP.NET Web configuration

tool

69807 Host cache counter isn’t reset on valid connection semantic

69805 SQLWARNING handler does NOT take precedence

over NOT FOUND one

69802 dict table schema check calls dtype sql name need-

lessly - wasting a lot of cpu

performance

69793 Dragging SQL Editor Tabs can cause strange behav-

ior.

69789 Unable to download MySQL for Visual Studio using

the installer

69785 WB sends unnecessary COM PING operations semantic

69783 mysqldbcompare cannot use passwords that contain

hyphens (-)

69782 Old files not being removed from perfor-

mance schema.file instances

69780 Fix for bug 14606334 in 5.6.11 breaks backward

compatibility for InnoDB recovery

semantic

69779 Export fails for Excel files containing 4000 characters

of text per cell

69777 Setting maxAllowedPacket below 8203 makes blob-

SendChunkSize negative

semantic
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69776 Long table and column comments are not handled

properly

69773 Generate SSL certs documentation: unique Common

Names required

69770 P S.HOSTS table shows NULL hosts for unauthenti-

cated client connections

69769 Removing connection requires relaunch of Work-

Bench

69767 Windows Installer does not allow for custom path

like in individual components

69766 InnoDB complains “There was a problem in convert-

ing partition in charset ...

semantic
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