
PerfScope: Practical Online Server Performance Bug

Inference in Production Cloud Computing Infrastructures

Daniel J. Dean Hiep Nguyen
Xiaohui Gu

North Carolina State University

{djdean2,hcnguye3}@ncsu.edu, gu@csc.ncsu.edu

Hui Zhang Junghwan Rhee Nipun
Arora Geoff Jiang

NEC Labs America

{huizhang,rhee,nipun,gfj}@nec-labs.com

Abstract

Performance bugs which manifest in a production cloud

computing infrastructure are notoriously difficult to diag-

nose because of both the difficulty of reproducing those bugs

and the lack of debugging information. In this paper, we

present PerfScope, a practical online performance bug in-

ference tool to help the developer understand how a per-

formance bug happened during the production run. PerfS-

cope achieves online bug inference to obviate the need for

offline bug reproduction. PerfScope does not require appli-

cation source code or any runtime instrumentation to the

production system. PerfScope is application-agnostic, which

can support both interpreted and compiled programs running

inside a cloud infrastructure.

We have implemented PerfScope and tested it using real

performance bugs on seven popular open source server sys-

tems (Hadoop, HDFS, Cassandra, Tomcat, Apache, Lighttpd,

MySQL). The results show that PerfScope can narrow down

the search scope of the bug-related functions to a small per-

centage (0.03-2.3%) and rank the real bug-related functions

within top five candidates in the majority of cases. PerfS-

cope only imposes on average 1.8% runtime overhead to the

tested server applications.

Keywords Testing and Debugging, Reliability, Performance

1. Introduction

It is a notoriously difficult task to diagnose a performance

bug [22, 29, 35] that occurred inside a production cloud com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SoCC ’14, November 03 - 05 2014, Seattle, WA, USA.
Copyright 2014 ACM 978-1-4503-3252-1/14/11. . . $15.00.
http://dx.doi.org/10.1145/2670979.2670987

puting infrastructure1. The reasons are multifold. First, it is

difficult, if not totally impossible, to reproduce a production-

run performance bug outside the cloud infrastructure be-

cause those performance bugs often only manifest under spe-

cific conditions (e.g., particular user inputs, certain system

configurations, non-deterministic system events). Thus, it is

hard to apply existing offline debugging tools such as GDB

directly to diagnose those performance bugs that cannot be

reproduced outside the production cloud infrastructure. Sec-

ond, unlike crash failures, performance bugs often provide

little diagnostic information. Many performance bugs even

do not produce any error message since they are unexpected

by the developer. To exacerbate the problem, it is often im-

practical to perform detailed system execution tracing inside

the cloud infrastructure due to concerns about prohibitive

cost and user privacy. However, a modern server system typ-

ically consists of tens of thousands of functions. Searching

the buggy functions among tens of thousands of functions

without any clue becomes an impossible task in many cases.

In this paper, we propose PerfScope, a practical online

bug inference tool to help the application developer under-

stand why a performance bug occurs in the production cloud

computing infrastructure. One big advantage of PerfScope

over existing offline debugging tools is that PerfScope does

not require production-run bug reproduction by achieving

online bug inference. PerfScope also does not require ap-

plication source code or any system instrumentation, which

makes it practical for production cloud infrastructures. Perf-

Scope is application-agnostic, which can be applied to any

program (e.g., C/C++, Java, Python, etc.) running inside the

cloud system. Our work focuses on diagnosing performance

bugs [22] that are defined as software bugs causing perfor-

mance anomalies (e.g., software hang, performance slow-

down). Performance anomalies caused by other problems

(e.g., hardware faults, configuration issues, kernel bugs) are

outside the scope of this work.

When a performance anomaly is detected by an existing

online anomaly detection tool [16, 37], PerfScope is trig-

1 In this paper, we do not distinguish different types of cloud systems (e.g.,

infrastructure-as-a-service clouds, platform-as-a-service clouds) since we

believe that our problem and approach apply to different cloud systems.

public static void copyBytes(…)

76 while (bytesRead >= 0){

81 bytesRead = in.read(buf);

}

int doIO(…)

142 return performIO(buf);

int performIO(...)

54 return channel.read(buf);

public int read(…)

153 return reader.doIO(...);

Bug related function

bytesRead always >= 0

�.

�.

�.

Figure 1. A subset of function call graph for a real HDFS

performance bug. When an input file larger than 2GB is

used, the internal variable (int) representing the content

length of the input file overflows. This causes the call to

in.read(buf) at line 81 to never return -1 causing an

infinite loop. The bug point is highlighted in bold.

gered to perform online bug inference by analyzing a win-

dow (e.g., five minutes) of recent system call traces collected

on the faulty server pinpointed by a component-level fault

localization tool [14, 30]. The rationale behind our approach

is twofold. First, a system call trace can be easily collected

via kernel tracing tool2 such as Linux Tracing Tool next gen-

eration (LTTng) [18] in production cloud computing infras-

tructures with low overhead. Moreover, compared to other

low-level tracing tools (e.g., hardware performance counter

monitoring tool [34]), the system call tracing tool works in

virtualized environments, which makes it suitable for virtu-

alized cloud infrastructures. Second, we observe that perfor-

mance anomalies are often caused by anomalous interactions

between the application and the kernel. Since applications

use system calls to interact with the kernel, we can detect

anomalous application-kernel interactions by closely moni-

toring system calls. For example, Figure 1 shows a real per-

formance bug in the HDFS system: an overflow issue causes

the while loop to never end. This buggy execution produced

1.4 million system calls. As we will show in Section 4, we

find that over 90% buggy functions produce system calls by

performing static analysis over 228 real performance bugs.

However, it is a challenging task to identify bug-related

functions from the massive, noisy raw system call traces.

First, we need to develop efficient online system call trace

analysis algorithms that can quickly identify the anomalous

system call sequences from millions of system calls. Sec-

ond, we need to develop fast and robust algorithms that can

accurately map those anomalous system call sequences to

specific bug-related application functions. Since our goal is

to support different applications (e.g., both compiled and in-

terpreted programs), we cannot rely on the program counter

2 Unlike the user level system call tracing tools such as ptrace [3], our

experiments show that the kernel-based system call tracing only imposes

on average 1.8% overhead to the tested server applications.

information to trace back to the application functions, which

does not work for interpreted programs and some compiled

programs using certain compilation optimizations.

To address those challenges, PerfScope first uses light-

weight unsupervised learning techniques to identify anoma-

lous system call sequences. Since the system call trace for a

multithreaded server program is often huge, we first segment

the raw system call trace into fine-grained units of closely

related system calls called execution units. We then charac-

terize different execution units using various features (e.g.,

system call appearance vector, system call execution time

vector, system call frequency vector). Next, we use a hybrid

anomaly detection scheme (i.e., hierarchical clustering plus

outlier detection) to identify abnormal execution units.

PerfScope then uses those abnormal execution units as

clues to identify the bug-related functions. We propose a

signature-driven approach that creates a robust signature

for each application function offline outside the production

computing environment. Each function signature maps the

function into a set of closed frequent system call episodes

(e.g., sys write, *, sys read). When a production-run

performance bug occurs, we extract the closed frequent sys-

tem call episodes from those anomalous execution units

and map those episodes back to a short list of candidate

buggy functions using the function signatures. We also pro-

vide a ranking to those identified functions based on the

abnormality degree observed in those frequent system call

episodes. Note that we do not view PerfScope as the final

debugging tool. Instead, PerfScope provides the developer

with a small number of candidate buggy functions to exam-

ine, which makes production-run performance bug diagnosis

much more tractable.

Specifically, this paper makes the following contribu-

tions:

• We propose an online performance bug inference tool

that works for production cloud computing environments

without requiring offline bug reproduction, application

source code, or runtime system instrumentation.

• We present a robust application function signature extrac-

tion approach that works for different types of applica-

tions (e.g., both compiled and interpreted programs) run-

ning inside virtualized computing environments.

• We describe a set of online system call trace analysis

algorithms that can quickly process millions of system

calls to produce a short list of bug-related functions.

• We evaluated PerfScope using real performance bugs in

popular open source systems (Hadoop, HDFS, Casandra,

Tomcat, Apache, Lighttpd, MySQL). The results show

that PerfScope is effective, which can narrow down the

search scope for the bug-related functions to a small

percentage (0.03-2.3%). The real bug-related functions

are ranked within top five candidates in 8 out of 12 cases

and are always ranked within top 15. PerfScope only

imposes on average 1.8% runtime overhead to the tested

server applications.

Assumptions: We design PerfScope based on the following

assumptions: 1) Performance bugs manifest as time or fre-

quency changes in system calls. As mentioned earlier, over

90% of the real performance bugs we studied generate sys-

tem calls; 2) We do not have access to application source

code or any other application knowledge; and 3) We assume

that function signatures can be profiled offline outside the

production environments and remain stable under different

inputs, workload intensities, and resource allocation settings.

Although we cannot assure that this assumption holds on ev-

ery system, our experiments with seven popular server sys-

tems under different workload conditions show that our ap-

proach is applicable to different types of functions without

requiring application specific tuning.

The rest of the paper is organized as follows. Section 2

compares our work with related work. Section 3 describes

the design of the PerfScope system. Section 4 presents our

experimental evaluation. Finally, the paper concludes in Sec-

tion 6.

2. Related Work

Our work is closely related to Triage [39] since both provide

onsite production-run failure diagnosis framework. The key

idea of Triage is to use checkpoint-replay with input/envi-

ronment modification to perform just-in-time problem diag-

nosis by comparing normal runs and failure runs. In contrast,

PerfScope does not require repeated replays, which makes

PerfScope less intrusive to the production computing envi-

ronment. Moreover, PerfScope specifically targets the per-

formance bugs, which often do not manifest as code block

changes between normal and failure runs. By detecting sys-

tem call invocation changes and leveraging the robust func-

tion signatures, we can identify the buggy functions more

effectively for performance bugs.

X-ray [12] provides automatic diagnosis support for per-

formance anomalies caused by inputs or misconfiguraitons.

It uses binary instrumentation to track the information flow

in order to estimate the cost and the likelihood that a block

was executed due to each potential root cause (e.g., config-

uration option). However, X-ray cannot diagnose the per-

formance anomalies caused by software bugs. Similar to

Triage, X-ray also requires replay support in order to of-

fload the heavyweight binary instrumentation and analysis

outside the production system. In contrast, PerfScope does

not require any record and replay to identify the buggy func-

tions.

Jin et al. [22] present a study of 109 real world perfor-

mance bugs in 5 different systems. By manually checking

the patches of known problems, they are able to then build an

efficiency rule-based checker which was able to identify pre-

viously unknown performance problems in deployed soft-

ware. However, the white-box approaches are only suitable

for offline debugging due to the source code requirements.

Additionally, existing white-box analysis tools mainly focus

on detecting possible performance bugs instead of diagnos-

ing a specific production-run performance bug. Directly ap-

plying existing bug detectors will lead to large false positives

and false negatives as demonstrated by previous work [21].

Fay [19] proposes to use kernel drivers or DLLs along

with hotpatching to collect and summarize detailed user-

level and kernel-level traces without modifying the under-

lying system. Fay needs to combine user level and kernel

level tracing to diagnose performance problems, imparting

up to 280% overhead. In contrast, PerfScope only relies on

kernel-level system call tracing, imparting on average 1.8%

overhead.

Magpie [13] instruments middleware and packet transfer

points to record fine-grained system events and correlates

these events using an application specific event schema to

capture the control flow and resource consumption of each

request. DARC [38] identifies functions that are the main

contributors to the latency peaks in a OSProf profile. Al-

though both systems can be used to diagnose performance

problems, they require instrumentations to the application

or the middleware, which is difficult to be deployed in the

production environment. In contrast, PerfScope does not re-

quire any application or middleware instrumentations, which

makes it practical for production computing environments.

Fournier et al. [20] proposed to analyze the blocking be-

havior using kernel-level system events for diagnosing per-

formance problems in multi-core systems. Similar to PerfS-

cope, their approach only relies on the kernel level tracing,

which imparts little overhead to the application. However,

their approach cannot identify bug related application func-

tions that can directly help the developer diagnose the per-

formance bugs.

Previous work also explored black-box performance de-

bugging schemes. Cohen et al. [15] proposed to use machine

learning models to correlate the system-level metrics with

the performance anomaly states for system metric attribu-

tion. Although black-box approaches are often light-weight

and non-intrusive, they can only provide coarse-grained

diagnosis (e.g., identifying fault related system metrics).

PBI [11] used hardware performance counters along with

pre-defined predicates to characterize concurrency and se-

mantic bugs for compiled programs. In contrast, PerfScope

focuses on performance bugs and can identify bug related

functions for both compiled and interpreted programs.

Our previous work, PerfCompass [17], focuses on differ-

entiating external faults (e.g., interference from co-located

applications) from internal faults (e.g., software bugs) for

production system performance anomalies. However, Perf-

Compass cannot localize buggy functions. Thus, PerfScope

is orthogonal to PerfCompass.

3. System Design and Implementation

In this section, we present the design and implementation of

the PerfScope system. We first describe the offline function

signature extraction scheme. We then describe the online bug

inference algorithms.

3.1 Offline Function Signature Extraction

We combine dynamic binary instrumentation with frequent

episode learning techniques to extract the function sig-

natures without requiring application source code. Our

scheme constructs robust function signatures by learning

what closed frequent system call episodes3 can be generated

by each function. Unlike other alternative approaches using

low level system metrics (e.g., execution time, CPU usage)

that often vary significantly among different platforms, we

found closed frequent system call episodes remain stable un-

der different workloads and resource allocation settings as

shown by our experiments. Thus, we can perform function

signature offline outside the production environment with-

out requiring the exactly same workload or environment that

trigger the production-run performance bug.

3.1.1 Binary-based Function Signature Profiling

To learn what system calls are produced by each function,

we correlate the function execution list provided by the dy-

namic binary instrumentation tool and the system call trace

provided by LTTng based on the timestamp information4.

The function execution list records all the function en-

try points and exit points from an executing application.

Each entry in a function execution list is in the form {time
stamp, enter function fi, thread ID} or {time stamp,

exit function fi, thread ID}. For C/C++ programs,

we use the Pin tool [26] to insert the logging code into the

binary to record when a function is called and when it re-

turns with a timestamp. For Java programs, we insert hooks

into the Java Virtual Machine (JVM) to intercept function

invocations as they are being executed, logging when each

function is called and when it returns with a timestamp.

Each system call entry consists of a pair of logs: 1)

[timestamp entry]system call name: {procname,ppid,

process ID, thread ID, cpu ID} and 2) [timestamp exit]
sys exit: {procname ppid, process ID, thread ID,

cpu ID}. We can derive the system call execution time by

computing the difference between timestamp exit and times-

tamp entry.

We then create a dynamic stack of active functions for

each running thread to determine which function was active

when each system call was generated. When a function is

called, we push the function onto the corresponding active

3 Closed frequent episodes mean that we only consider the maximum fre-

quent episodes, not any sub-sequence of those frequent closed episodes.
4 Although we can also use the dynamic binary instrumentation tool (e.g.,

the PIN tool) to collect the system call trace directly, those tools do not

provide the function origin of each system call by themselves.

S1

sys_write

S2

sys_read

S2

sys_read

S1

sys_write

Minimum support = 10

Count: 15 Count: 8

L
ev

el
 2

S1

sys_write

S2

sys_read

S1

sys_write

S1

sys_write

S1

sys_write

S2

sys_read

Count: 3 Count: 4

S1

sys_write

S2

sys_read

S2

sys_read

S2

sys_read

S1

sys_write

S2

sys_read

Count: 3 Count: 5

L
ev

el
 3

S1

sys_write sys_read

Count: 20 Count: 25

S3

sys_poll

Count: 5

S2

L
ev

el
 1

Figure 2. Frequent closed system call episodes discovery.

All the frequent system call episodes (counter >10) are

highlighted in gray color. The frequent closed episode is

highlighted within a circle.

function stack based on the thread ID associated with the

function. When a function returns, we pop the function off

the active function stack. Given a system call si with a thread

ID tid = k, we compare its exit timestamp Tsi
with the

timestamp Ttop of the top function fi on the active function

stack for the same thread tid = k. We also compare Tsi

with the timestamp Tnext of the next function fi+1 in the

function execution list. If the system call si occurs after the

application enters fi but before enters fi+1 (i.e., Tsi
≥ Ttop

and Tsi
< Tnext), we know si must have been generated by fi.

If we find the exit timestamp of the current system call si is

larger than or equal to the timestamp of the next function in

the function execution list (i.e., Tsi
≥ Tnext), we push the next

function fi+1 onto the stack and label that the system call si

is produced by fi+1. This process continues until either we

have no more functions to process or no more system calls

in the system call trace.

After the annotations for all the system calls are done,

we group all the system calls produced by the same func-

tion together and sort them based on their timestamps

into time ordered sequences. For example, if the system

call sys write annotated with function fi is followed by

sys read annotated with the same function, we add the se-

quence {sys write, sys read} into the function profiling

result for fi. If a function consists of any branch statements,

the profile of the function may consist of a set of system

call sequences (e.g., {{sys write, sys read}, {sys poll,

sys futex}}) when different branch paths are executed.

3.1.2 Frequent System Call Episode as Robust

Function Signature

Although we could use the set of the raw system call se-

quences to represent the signature of the function, we found

that those raw system call sequences are sensitive to execu-

tion environment changes. Since our goal is to find a robust

function signature that is stable under different execution en-

vironments, we extract closed frequent system call episodes

from those raw system call sequences, which can better char-

acterize the key distinct behaviors of different applications.

During our experiments, we observe that those frequent sys-

tem call episodes are quite stable under different execution

environments.

We extract closed frequent system call episodes from

the raw system call sequences for each function using a

common frequent episode mining algorithm called the A-

priori method [6, 33]. The basic idea of the A-priori method

is to start at the basic event type (e.g., a single system call)

and then build up more complex sequences by taking all

possible permutations using all the frequent episodes at all

lower levels (i.e., frequent episodes of smaller size), shown

by Figure 2.

The frequent episodes search iterates until a maximum

level is reached where no frequent episode can be found.

We perform pruning to reduce the number of items to be

processed at each level. The intuition behind our pruning

scheme is that a frequent episode at a higher level must be

a frequent episode at a lower level. So it is only necessary

to generate the permutations of the episodes we marked as

frequent in the previous level. A minimum support value

(L) is usually used to define the frequency lower bound for

generating frequent episodes.

Figure 2 illustrates the frequent closed system call se-

quence discovery algorithm using a minimum support value

L = 10. We start from three single system call episodes. We

then drop sys poll since its count does not meet the min-

imum support. At the level 2, we search all the permuta-

tions of the frequent episodes in the level 1 and identify

(sys write, sys read) as a frequent episode. Moving up

the level 3, we consider the permutations of all the frequent

episodes found in the level 1 and 2. We found four possi-

ble permutations and none of them meets the minimum sup-

port. We stop the frequent episode search and outputs the

(sys write, sys read) as the frequent closed episode.

We implement frequent closed episode frequency count-

ing using finite state machine (FSM) based matching al-

gorithm. During the candidate generation phase, we build

a FSM for each candidate episode. Each state in the FSM

represents a system call type. Given an input system call

sequence, we match this sequence with all the candidates’

FSMs simultaneously. When the input system call matches

the current state in the FSM, we move the match pointer to

the next state in the FSM. If the input system call does not

match, we reset the match pointer to the start state. When all

the states in the FSM are matched, we increase the frequency

counter of the candidate episode represented by this FSM by

1 and reset the match pointer to the start state of the FSM.

In our experiments, we found that if we only consider

contiguous frequent episodes, we often only discover trivial

system call sequences that cannot help us distinguish differ-

ent functions. Thus, we modified our algorithm to discover

non-contiguous frequent episodes such as (sys write, ∗,

sys read), where ∗ represents arbitrary system calls or zero

system call. To discover non-contiguous frequent episodes,

we only need to make a minor change to the above matching

algorithm: if the input system call does not match the cur-

rent state in the FSM, we do not reset the match pointer to

the start state and wait until the next match occurs.

How to set a proper minimum support value (L) is a tricky

issue. We calculate the minimum support value using the

standard way of multiplying the number of items (i.e., sys-

tem calls included in the execution unit Nsys call) with a cer-

tain percentage p [40], that is L = Nsys call × p. In our ex-

periments, we use p = 1%. We also conduct the sensitivity

study on other possible values of p to evaluate its impact to

our system. The general principle behind the minimum sup-

port value selection is that we should not use an overly high

minimum support value, which prevents us from finding any

frequent episodes; we should also avoid using a trivial mini-

mum support value (e.g., L = 1) as this causes us to find too

many frequent episodes (e.g., tens of thousands). So we set

L = max(min(Nsys call × p,10),2) to cap the minimum sup-

port value at 10 and avoid the trivial minimum support value.

We found our calculation scheme works well for all different

systems we tested.

It can be time-consuming to perform the signature extrac-

tion for a complex server program consisting of tens of thou-

sands of functions. We observe that the function signature

extraction for different functions are independent from each

other and can run in parallel. So we implement a distributed

function signature extraction system to speed up the profil-

ing process. Moreover, the function signature extraction is

done offline, which will not affect our online bug inference

time.

Note that PerfScope also does not require to profile all

different function call paths but just individual functions.

The function call path of the buggy run is inferred from

the system call trace of the production-run directly, which

will be explained in Section 3.2. We can also selectively

profile a subset of user defined functions and exclude those

uninteresting functions such as system libraries. For exam-

ple, for C/C++ programs, we can use indexing tools such

as cTags [1] to generate the list of profiled functions. For

Java programs, we can use package names (e.g., Hadoop,

catalina) to select the functions to be profiled.

3.2 Online Bug Inference

Our online bug inference scheme consists of three major

steps: 1) extracting different execution units from the raw

system call trace; 2) identifying anomalous execution units;

3) mapping anomalous execution units into a rank list of bug

related functions. We will describe each step in detail in this

section.

3.2.1 Execution Unit Extraction

The system call trace collected by LTTng is a massive

stream of mixed system calls produced by different pro-

cesses, threads, and functions. To identify bug-related func-

tions, we first need to segment the raw system call trace into

a set of execution units. Ideally, each execution unit should

consist of a set of semantically related system calls which are

produced by the same function, thread, and process. Since

the system call trace collected by LTTng provides process

ID and thread ID, it is easy to segment the trace into dif-

ferent threads/processes. However, during experiments, we

found that the thread-based segmentation is sometimes in-

sufficient. First, we observe that some server systems (e.g.,

Apache web server) use a pre-allocated thread pool in order

to avoid the overhead of constantly creating new threads.

The threads in the thread pool are reused for different tasks,

which can cause the behavior of those threads to vary signif-

icantly over time. Second, some long running threads often

execute multiple different functions. To address this issue,

we propose to use the time gap to split those threads. The

intuition is that a large time gap between two consecutive

system calls in a thread implies a thread recycling or func-

tion switching. Therefore, we compute the intervals between

each pair of contiguous system calls in the trace and use the

mean + 2× standard deviation as the segmentation thresh-

old to split the per-thread trace. We found this segmenta-

tion threshold works well for all the tested systems and also

conducted sensitivity study on this threshold value in the

experiments.

During dynamic application runtime, we need to address

one issue with the time gap based segmentation. We observe

that the context switch between different threads caused by

CPU scheduler sometimes creates a time gap between two

semantically related system calls. Thus, we need to ignore

those time gaps caused by the context switch. Luckily, it

is easy to detect context switches in the LTTng collected

system call trace. For example, when we detect either a

thread ID change or a CPU ID change, we know a context

switch has happened.

3.2.2 Abnormal Execution Unit (AEU) Identification

We use light-weight unsupervised learning methods to iden-

tify abnormal execution units. We chose unsupervised learn-

ing approach because it does not require any labelled train-

ing data which are hard to obtain the production environ-

ment. Specifically, we use a hybrid anomaly detection algo-

rithm that combines hierarchical clustering and outlier de-

tection.

We first apply a top-down hierarchical clustering [23] to

group those execution units that perform similar operations

together. This grouping is important, which can not only in-

crease our accuracy but also reduce the processing time as

the outlier detection step is more costly. For this purpose,

we extract a system call appearance vector for each exe-

cution unit. The length of the system call appearance vec-

tor is equal to the number of unique system call types (e.g.,

sys write, sys poll) seen across all the execution units.

Each system call type is assigned a position in the vector.

The value is set to 1 if that type of system call is present in

the execution unit, or 0 if it is not. For example, consider two

execution units, {sys write, sys read} and {sys poll,

sys read}. In this case, system call appearance vector fol-

lows the format of [sys write, sys read, sys poll]. The

system call appearance vector for the two execution units

would be [1,1,0] and [0,1,1], respectively. We chose the

system call appearance vector as the clustering feature vec-

tor to achieve robust grouping since two similar execution

units might produce different numbers of the same system

call type due to dynamic runtime environments.

Next, we perform outlier detection within each cluster to

identify abnormal execution units. We observe that the ab-

normal behaviors of the affected execution units may man-

ifest in both system call frequencies or execution time. For

example, a loop bug may cause certain system calls to be ex-

ecuted more frequently whereas a synchronization bug may

cause the lock acquiring system calls to take longer to com-

plete their execution. Therefore we build a system call exe-

cution time vector (consisting of average execution time for

each system call type) and a system call frequency vector

(consisting of the count for each system call type) as two

features for each execution unit. We use the nearest neigh-

bor algorithm [36] to perform the outlier detection. Specif-

ically, we compare the Euclidean distance from each exe-

cution unit to its nearest neighbor within the cluster using

either the execution time vector or the frequency vector. If

the nearest neighbor distance of an execution unit is larger

than the mean nearest neighbor distance of the whole cluster

plus two times the standard deviation, we say this execu-

tion unit is abnormal. We observe that some execution units

might form a small cluster (e.g., size of the cluster < 4) by

themselves. It is not meaningful to perform outlier detection

within those small clusters. All the execution units in those

small clusters are considered to be abnormal.

3.2.3 Bug Related Function List Generation

We now describe how we map those abnormal execution

units to bug-related application functions and rank them

based on an abnormality degree metric.

For each abnormal execution unit AEUi, we extract a set

of frequent closed system call episodes using the same fre-

quent episode mining algorithm described in Section 3.1.2.

Let FEAEUi
denote the set of the frequent closed system

call episode set produced by AEUi. Similarly, our offline

function signature profiling process produces a set of fre-

quent closed system call episode FE fi for each function fi.

If any frequent episode in FEAEUi
matches with any frequent

episode in FE fi , we infer that AEUi must execute part of the

function fi and output fi as one candidate function.

For each candidate function fi, we compute a total count

of all the matching frequent episodes for fi and its corre-

sponding abnormal execution unit AEUi, respectively. If the

total frequent episode count of AEUi is greater than or equal

to that of fi, we infer that AEUi must have run some parts of

System

name

Num

of bugs

studied

% of bugs

generating

system calls

% of

slowdown

bugs

% of

hang

bugs

Hadoop 40 83% 10% 90%

HDFS 32 100% 38% 62%

Cassandra 47 85% 28% 72%

Tomcat 22 95% 18% 82%

Apache 17 100% 41% 59%

Lighttpd 10 90% 30% 70%

MySQL 60 90% 38% 62%

Table 1. Statistics on the real performance bugs we

examined.

fi incorrectly (e.g., an incorrect loop) when the bug is trig-

gered. We then output fi as one identified function.

We then calculate a rank score for each identified func-

tion using a maximum percentage increase metric (i.e., the

largest count increase percentage among all the matched fre-

quent episodes between AEUi and fi) to quantify the ab-

normality degree of different functions during the buggy

run. We sort all the identified functions using increasing

rank scores. We break the tie between two functions with

the same rank score using the percentage of matching fre-

quent episodes between the function and its corresponding

AEU because a higher matching percentage means we are

more certain the function was executed by the correspond-

ing AEU.

In addition, PerfScope can also infer possible call paths

from the system call trace collected during buggy run. For

each identified function, we examine the earliest and latest

system call timestamps in all matching frequent episodes be-

tween the function and its corresponding AEU. Using those

timestamps, we can infer the time when each function was

active during the buggy run and use that information to cre-

ate a time-based ordering among the identified functions.

This information can be helpful for developers to further un-

derstand how the bug is triggered and propagates in the pro-

gram. The developer can also refer to the function call graph

that can be extracted via static code analysis to improve the

precision of our function call path inference, which however

is beyond the scope of this paper.

4. Experimental Evaluation

We tested PerfScope using seven popular open source server

systems: 1) Hadoop [9]: a map-reduce framework; 2) HDFS [9]:

a distributed file system; 3) Cassandra [8]: a distributed rela-

tional database system; 4) Tomcat [10]: a multi-threaded ap-

plication server; 5) Apache web server [7]: a multi-threaded

web server; 6) Lighttpd [24]: a light-weight web server; and

7) MySQL [27]: a relational database system. In this section,

we first describe our static bug analysis result and the bug

samples we could reproduce and use in our experiments. We

then present our experiment setup followed by the bug in-

ference results. We then discuss our sensitivity study results

followed by the overhead evaluation.

4.1 Real Performance Bug Samples

We searched the bug repositories of each system we tested

using performance terms (e.g., hangs, slowdown, etc.) and

developer provided performance tags when available. We

only examined those bugs which were confirmed by de-

velopers and subsequently fixed. Table 1 shows the results

of our study. We manually examined each bug, along with

any provided patch, to determine what kind of problem the

bug caused (e.g., hang, slowdown) and whether the buggy

function generated system calls. We found that over 90%

bugs generate system calls. We found more hang bugs than

slowdown bugs in each system.

We then try to reproduce each bug by following the

instructions in the report and checking that the expected

performance anomaly symptoms appeared (e.g., increased

response time, 100% CPU usage, system is unresponsive).

The bug reproduction is extremely time-consuming and

tricky due to limited and often ambiguous information,

which sometimes takes a month for us to reproduce one bug.

Table 2 lists the 12 performance bugs we could reproduce

given our time limit.

Although we only reproduced 12 out of the 228 bugs due

to time constraints, the characteristics of the bugs we repro-

duced are similar to the other bugs we studied. Specifically,

we found most of the bugs we examined involve some kind

of loop problem, which is consistent with the observations

of previous work [22, 31]. However, the bug points do not

always reside in those loops. As we will show later, Perf-

Scope can identify those bug-related functions that either

include the bug points or are close to the functions that in-

clude the bug points. We found that several system hangs

were the result of an application component waiting for a

response which will never arrive or executing a blocking

command without an appropriate timeout value. These types

of problems can be difficult to track down. We also found

the fix to these types of hang bugs was typically simple (e.g.,

adding timeout value). Lastly, we found I/O (e.g., file write)

and locking operations were the most common system call

generating operations. Based on our study, we believe the

majority of the system call generating bugs we examined can

be correctly handled by PerfScope.

4.2 Experiment Setup

The Hadoop, HDFS, Tomcat, and Cassandra systems were

tested on a virtualized cloud test bed where each host

is equipped with a quad-core Xeon 2.53Ghz CPU along

with 8GB memory and runs 64bit CentOS 5.3 with KVM

0.12.1.2. The Apache, Lighttpd, and MySQL systems were

tested on the virtual computing lab (VCL) [5], a production

cloud infrastructure where each host has a dual-core Xeon

3.0GHz CPU and 4GB memory, and runs 64bit CentOS 5.2

with Xen 3.0.3. In both cases, each system call trace was

Bug name

(system

version)

Server

description

(LOC)

Num.

of

error

msg

Num.

of

threads

Num.

of

system

calls

(million)

Log

size

(MB)

Bug description Bug

symptom

Hadoop bug

(v0.23.1)

Data

processing

framework

(1.3M Java)

0 729 1.5 222 Endless wait for an atomic variable to be

set. (#MAPREDUCE-3738)

hang

HDFS bug

(v2.0.0-alpha)

Data

processing

framework

(1.3M Java)

1 340 1.4 227 Continuously read until timeout on a socket.

(#HDFS-3318)

hang

Cassandra bug

(v1.2.0-beta)

Database

(168K Java)

0 95 1.1 241 Incorrect return value handling causes

Cassandra to enter an infinite loop. (#5064)

hang

Tomcat-1 bug

(v7.0.28)

Application

server (287K

Java)

0 20 0.2 18 Tomcat tries to upgrade a read lock to a

write lock, which causes the server to hang.

(#53450)

hang

Tomcat-2 bug

(v7.0.27)

Application

server (284K

Java)

1 682 0.9 68 A shared counter value is not updated

correctly causing all the threads to keep

checking the value endlessly.(#53173)

hang

Tomcat-3 bug

(v6.0.13)

Application

server (228K

Java)

0 26 0.4 28 A filter chain item is not set properly

causing an infinite loop. (#42753)

hang

Apache-1 bug

(v2.0.55)

Web server

(161K C/C++)

0 19 3.7 142 Incorrect flag causes infinite loop. (#37680) hang

Apache-2 bug

(v2.2.4)

Web server

(194K C/C++)

0 7 1 140 Incorrect flag causes proxy SSL

connections to be constantly created

and destroyed, slowing down performance.

(#43238)

slowdown

Lighttpd-1 bug

(v1.4.15)

Web server

(38K C/C++)

0 10 5.3 160 Incorrect errno handling causes an infinite

loop. (#1212)

hang

Lighttpd-2 bug

(v1.4.23)

Web server

(37K C/C++)

0 18 4.3 532 Large chunks of response data are

repeatedly read and discarded while

processing header information. (#1999)

slowdown

MySQL-1 bug

(v5.5.5-m3)

Database server

(914K C/C++)

0 551 1.9 138 Two threads try to execute the INSERT

DELAYED statement but one of them has a

locked table, causing two threads to become

deadlocked. (#54332)

hang

MySQL-2 bug

(v5.6.5-m8)

Database server

(1.3M C/C++)

0 9 1.9 39 Flushing to disk abnormally frequently

after truncating a large table. (#65615)

slowdown

Table 2. Reproduced real performance bugs that are used in our experiments.

collected in a virtual machine using LTTng 2.0.1 running

32-bit Ubuntu 12.04 kernel version 3.2.0.

We use PIN version 2.12 [26] to generate the function sig-

nature profiles for Apache, MySQL, and Lighttpd written in

C/C++. For Hadoop, HDFS, Tomcat, and Cassandra, we in-

strumented the openJDK6 JVM [32] to perform the function

signature profiling. The function signature extraction were

done under the following workload conditions: 1) Hadoop:

we use the Pi calculation application with 16 map and 16

reduce tasks; 2) HDFS: we transferred a 200MB file using

hftp; 3) Cassandra: we use a simple workload which creates

a table and inserts various entries into the table; 4) Tomcat:

we randomly request different example servlets and JSPs in-

cluded with Tomcat following a workload intensity observed

in a NASA web server trace [2]; 5) Apache: we use httperf to

request various pages from the Apache server; 6) Lighttpd:

we use the same workload as Apache and configure Lighttpd

to run in multi-process mode; 7) MySQL: we use a open

source MySQL benchmark tool called Sysbench [4] and did

the oltp test in complex mode. Note that the workloads we

used for profiling are different from the bug-triggering work-

loads. We also intentionally vary the resource allocation set-

ting for the profiling environment to test the robustness of

our function signatures. We found that the workload and

resource allocation changes did not significantly affect the

frequent episodes generated. For example, varying the work-

Bug name, number of

functions, (percent of

identified functions)

Top ranked bug-related

functions (Rank)

Examples of detected abnormal application-kernel interactions

Hadoop,85495 (0.52%) getState (4) Continuously produces {sys gettimeofday,sys stat64, sys stat64,

sys gettimeofday} for acquiring locks to check an atomic variable.

HDFS,81306 (1.5%) Reader.performIO (3),

SocketIOWithTimeout.doIO

(5)

Continuously produces {sys gettimeofday,sys read,sys read,

sys gettimeofday} for attempting to perform I/O.

Cassandra,21765 (0.6%) maybeSwitchMemtable

(4),

SSTableSliceIterator.hasNext

(5)

Continuously produces {sys gettimeofday,sys futex,sys futex,

sys gettimeofday} for synchronization from a buggy infinite loop.

Tomcat-1,32789 (1.5%) addLifecycleListener (2) Continuously produces {sys stat64,sys gettimeofday,

sys gettimeofday,sys stat64} for upgrading from a read lock to a write

lock.

Tomcat-2,32571 (0.8%) LimitLatch.countDown

(11)

Continuously produces {sys gettimeofday,sys stat64,

sys stat64,sys gettimeofday} while checking an atomic counter value.

Tomcat-3,26471 (0.4%) Poller.run (3) Continuously produces {sys gettimeofday,sys read,sys read,

sys gettimeofday} while reading and attempting to process an event in a

buggy infinite loop.

Apache-1,17721 (0.7%) apr allocator mutex get

(14)

Continuously produces {sys gettimeofday,sys write} for logging in a

buggy infinite loop.

Apache-2,18761 (2%) ssl hook pre connection

(9)

More {sys stat64,sys write,sys gettimeofday,sys stat64} are

generated for logging in the buggy ssl hook pre connection function.

Lighttpd-1,954 (0.1%) fdevent poll (1) Continuously produces {sys poll,sys time,sys time,sys poll} while

waiting for events to be processed in a buggy infinite loop.

Lighttpd-2,3577 (0.08%) connection handle read state

(3)

Continuously produces {sys ioctl,sys read,sys read,sys ioctl}
while repeatedly reading large chunks.

MySQL-1,25360 (0.6%) ha lock engine (14) Continuously produces {sys stat64,sys llseek,sys read,sys stat64}
when checking for lock availability over the network.

MySQL-2,34850 (0.03%) buf flush list (4) More {sys futex,sys gettimeofday,sys gettimeofday,sys futex}
are generated for synchronization while flushing lists to disk.

Table 3. Online bug inference result summary.

load intensity from 50 static page requests per second to 125

static page requests per second while building an Apache

profile only caused 4% of the generated frequent episodes to

change.

During each buggy run, PerfScope is triggered when the

performance anomaly is detected by an external detector that

checks for reported performance anomaly symptoms such

as zero progress score or abnormal response time. Once

triggered, PerfScope was run using the recent 1.5 minutes

of system call traces for analysis. We can retrieve longer

system call trace from an NFS server if needed. However,

our experiments show that 1.5 minutes system call trace is

sufficient for all the bugs we tested.

4.3 Bug Inference Result Summary

Table 3 shows a summary of our bug inference results for

all tested bugs. We can see most server systems we tested

consist of tens of thousands of functions. As shown in Table

2, most performance bugs do not produce any error mes-

sage and some buggy runs also involve a large number of

threads, it is a daunting task for the developer to figure out

why the performance bugs occurred. Profiling by itself can

help reduce the search scope as we only profile the functions

called the system configuration described in the bug report,

which was 0.7% to 10% of the total functions. However, this

still equates to thousands of functions to search. The results

show that PerfScope can identify a short list of bug-related

functions for all tested bugs, which can greatly reduce the

search scope to only 0.03-2.3% of total functions. We be-

lieve that this search scope reduction can significant expedite

the debugging process.

To further validate the effectiveness of our bug infer-

ence results, we manually examined the source code of each

tested server system to determine whether each of our short

lists indeed includes the bug-related functions which can

help the developer to locate the bug. We list the top ranked

bug-related functions identified by PerfScope in Table 3. We

found that the short list of identified functions indeed cover

the bug-related functions in all the bugs we tested. We rank

the bug-related function within the top five candidates in 8

out of the 12 bugs. In the worst case, we rank the bug-related

function at 14. When multiple functions contribute to the

problem (e.g., HDFS bug, Cassandra bug), PerfScope can

identify them as well. Table 3 also shows one example of

abnormal frequent system call episodes detected by PerfS-

cope for each bug.

As shown in our results, PerfScope can handle both per-

formance degradation bugs and hang bugs. PerfScope works

best for detecting those bugs involving a buggy loop (e.g.,

an infinite loop or a loop iterates more times than usual).

Previous work [22] along with our own study have shown

most performance bugs do exhibit these characteristics.

We also investigated the cases where PerfScope fails to

rank the bug-related function within top 5 and identified two

main reasons causing this. First, we found there are some

frequent system call episodes which are common to several

functions. When the abnormal frequent system call episodes

also appear in a function called less frequently than the bug-

related function during profiling, this can cause us to rank

that function higher than the bug-related function. However,

we found most of those mistakenly high-ranking functions

(e.g., initialization functions) can be easily filtered out by the

developer. Second, we sometimes give high rank to common

utility functions (e.g., custom fast comparison function) used

throughout the application. When those utility functions are

called several times in the buggy function, this can cause the

utility function to have a higher rank score than the buggy

function. We are currently exploring ways of filtering out

those common utility functions.

4.4 Bug Inference Case Studies

To further understand how the output of our bug inference

tool can be used for debugging, we now discuss three of our

bug inference results in detail. Due to the space limitation,

we cannot describe the inference results for all the bugs in

detail. We hope that these three case studies can show the

usefulness of PerfScope for helping the developer diagnose

the production-run performance bugs.

Cassandra bug: This Cassandra performance bug is re-

lated to a memtable mishandling problem. Figure 3 shows a

subgraph of the bug’s call graph. The root cause of this bug is

the if statement at line 650 of the maybeSwitchMemtable

function. The code block (lines 651 and 652) within the

if statement should be executed at least once for every

memtable object in order to add the memtable object into the

memtable list. However, if a memtable is clean, the check

at line 650 will be false, causing the memtable not to be

added to the list. As the memtable has not been processed,

the check at line 172 in the reload function never becomes

true, causing the program never breaks out of the while

loop. No error message is produced for this bug.

PerfScope analysis produced 1229 execution units, which

were clustered into 49 clusters. Our outlier detection results

identified 19 time based outlier units and 33 frequency based

outlier units. PerfScope successfully identifies the root cause

function maybeSwitchMemtable function as the fourth top

ranked function. We found this function produced a set of

public void reload()

168 while(true){

172 if(Memtable.initialComparitor==comparitor)

173 break;

174 Future future = maybeSwitchMemtable(...);

}

public Future<?> maybeSwitchMemtable(…)

649 Memtable mt = cfs.getMemtableThreadSafe();

650 if (!mt.isClean() && !mt.isFrozen()){

651 mt.freeze();

652 icc.add(cfs); //should be executed at least once

}

�.

�.

�.

�.

�.

initialCompararitor

!= comparitor Bug related function

�.

Figure 3. A subset of the call graph for the Cassandra bug.

The bug causes a clean memtable not to be added to the list

of memtables, resulting in an infinite loop in the reload

function. The bug point is highlighted in bold. PerfScope

identifies the root cause function maybeSwitchMemtable

as the 4th top ranked bug-related function, which is respon-

sible for adding all the memtables.

30 frequent episodes during profiling. We also found that

this function is only called in a limited number of loca-

tions. Thus, identifying this function can help the devel-

oper quickly localize the problem. The fix to this bug is to

force the code block within the if statement at line 650 of

the maybeSwitchMemtable function to be executed at least

once.

HDFS bug: The second bug we discuss in detail is a

HDFS bug mentioned in the introduction, which is caused

by an overflow of an internal variable. Figure 1 shows the

subgraph of the bug’s call graph. When copying a file using

the distcp command, the copyBytes function is called to

read 4096 bytes from the source stream and write those bytes

to the destination stream. This causes the read, doIO, and

performIO functions to be called in turn. The performIO

function then makes a low level socket call and returns the

number of bytes read back. This process is repeated until -1

is returned, signaling the end of the input stream has been

reached. When this command is called with a file larger than

2GB in size, however, an internal variable (int) representing

the length of the source stream overflows and the end of

stream signal (i.e., −1) is never sent. This causes while

loop at line 76 of the copyBytes function to never end until

the operation times out several minutes later. The only error

message generated throughout this process is a message

saying the operation timed out. Additionally, as HDFS uses

many different interfaces and abstract classes, it is difficult to

identify which implementation subclass causes the problem.

PerfScope analysis produced 3817 execution units, which

were clustered into 174 clusters. Our outlier detection results

identified 92 time based outlier units and 113 frequency

based outlier units. The third top ranked function PerfScope

int fdevent_poll(…)

33 return ev->poll(...);

static int fcgi_demux_response(…)

2401 if (ioctl(hctx->fd, FIONREAD, &toread)) {

2441 else {

2442 if (errno == EAGAIN) return 0;

Bug related function

int main (…)

1040 while(!srv_shutdown){

1282 if ((n = fdevent_poll(srv->ev, 1000)) > 0) {

1309 r = (*handler)(srv, context, revents)

�.

�.

�.

�.

static handler_t fcgi_handle_fdevent(…)

3146 fcgi_demux_response(srv, hctx);

�.

�.

�.

�.

�.

�.

Invoked at line 1282 Invoked at line 1309

Figure 4. A subset of the call graph for the Lighttpd bug.

The errno is handled incorrectly, causing the main function

to process the same event again and again. The bug point is

highlighted in bold. PerfScope identified the fdevent poll

as the bug related function which is responsible for control-

ling the event processing to continue as long as the number

of events (n) is positive.

identified is the SocketInputStream$Reader.performIO

function. We found this function produced a set of 30 fre-

quent episodes during profiling. As shown in Figure 1,

this is one of the functions directly responsible for read-

ing data from the input stream and is directly related to

the bug. By telling developers not only the function name,

but also telling the developer that the bug is related to the

SocketInputStream$Reader class, debugging time for

this problem can be greatly reduced. Additionally, identify-

ing that the problem is caused by an infinite loop could help

developers immediately rule out other misleading causes,

such as a network issue. The fix in this case is to ensure

streams larger than 2GB is processed in chunks of appropri-

ate size.

Lighttpd-1 bug: The third bug we want to discuss

is a Lighttpd bug shown by Figure 4. The performance

anomaly is caused by the if statement at line 1282 of

the main function always stays true, causing the code

block within the if statement executes forever. During

this buggy run, the fdevents function is first invoked

at the if statement at line 1282 of the main function.

Next, the fcgi handle dfevent function is invoked at line

1309, which then calls the fcgi demux response func-

tion. The root cause of this problem is an improper errno

handling (i.e., setting errno to EAGAIN) at line 2442 of

the fcgi demux response function causes this function

to return 0. When the function fcgi handle fdevent re-

ceives a 0 return value from fcgi demux response, it does

not clean up this event from the event queue. This in turn

causes fdevent poll to return a value > 0, which causes

the system to process this same event again and again. No

error message is generated during this process.

PerfScope analysis produced 9380 execution units, which

were clustered into 7 clusters. Our outlier detection results

identified 33 time based outlier units and 31 frequency based

outlier units. PerfScope identifies the fdevent poll as the

top ranked bug-related function, which controls the event

processing code at line 1282 of the main function. We found

this function produced a set of 900 frequent episodes during

profiling. The large number of frequent episodes produced

by this function are a result of the variety of tasks it is in-

volved with. By starting debugging at this function, devel-

opers could quickly see that the same event was being pro-

cessed over and over. This information is especially useful

for Lighttpd, which has a complex main function respon-

sible for performing many different tasks. Furthermore, the

function we identify resides in the same if statement code

block with the root cause function. This means developers

would have significantly fewer areas to explore when trying

to debug the problem. The fix for this issue would be to

ensure errno is handled appropriately, ensuring the event

is processed.

4.5 Sensitivity Study

We conducted sensitivity study experiments to evaluate how

different parameter settings affect our bug inference results.

Although we omit the results due to space limitations, we

found that the parameter values do not significantly affect

our bug inference results. We also examined the ranks of the

true bug related functions, which also show little changes.

4.6 PerfScope Overhead

Bug name Online bug

inference

Offline function signature

extraction

Hadoop 15.99 min 9.5 min

HDFS 29.94 min 38 min

Cassandra 3.34 min 12.9 min

Tomcat-1 5.14 min 42.7 min

Tomcat-2 12.34 min 2.9 hour

Tomcat-3 2.32 min 48.7 min

Apache-1 2.93 min 15.5 min

Apache-2 4.3 min 14.4 min

Lighttpd-1 9.91 min 1.02 hour

Lighttpd-2 5.87 min 1.15 hour

MySQL-1 12.8 min 44.5 min

MySQL-2 5.22 min 44.5 min

Table 4. Online and offline computation time for PerfScope.

We now evaluate the overhead of PerfScope to differ-

ent server systems. For Hadoop/HDFS we ran the Pi sam-

ple application. For Cassandra, we ran a database insertion

workload. We used httperf to send a number of requests to

Tomcat, Apache, and Lighttpd. We used a request rate of

50 requests per second for Tomcat, 100 requests per second

for Apache and Lighttpd. For MySQL, we run a constant

workload of 20 select requests per second. Those request

rates are set based on the maximum processing capacity of

our host. We ran all overhead experiments 5 times, report-

ing the mean. We impart an average of 1.8% runtime over-

head to the server system. Specifically, we impart 2.97%

to Hadoop/HDFS, 3.33% to Cassandra, 1.4% to Tomcat,

0.8% to Apache, 0.3% to Lighttpd, and 2.2% to MySQL.

We found Perfscope imparts between 2-3% CPU load and

has a small memory footprint (about 256KB). We also found

the storage overhead is reasonable, varying between about

18MB to 530MB.

We also ran an experiment to determine how PerfScope

overhead scales under different workload intensity by com-

paring the overhead of tracing at 50, 75, 100, and 125 re-

quests per second to an Apache web server. We found the

log size scales linearly with request rate while the overhead

of tracing remained constant. We used least squares linear

regression to project log sizes for larger request rates. We

found that the one-minute tracing log size will be around

450MB given 900 requests per second. Note that this log

size can significantly reduced using standard compression

techniques, which will be discussed further in Section 5. The

low overhead we observed is consistent with the overhead

results of previous projects [25]. Hence, we believe that Perf-

Scope is light-weight and practical for online bug inference

in production cloud computing infrastructures.

We now present the online and offline computation time

of PerfScope shown by Table 4. The results show that Perf-

Scope can complete the online bug inference within tens of

minutes. The majority of the online inference time was spent

on extracting the frequent episodes for different anomalous

execution units in order to identify the bug-related functions.

This time can be further shortened if we use multiple dis-

tributed hosts to perform the frequent episode mining. Our

distributed offline function signature extraction time ranged

from 9.5 minutes to about 2.9 hours as shown in Table 4.

These times were obtained by running our distributed sig-

nature extraction algorithm on a 7 node cluster and could

be further improved on larger clusters. Additionally, as the

function signature profiling is performed offline outside the

production environment, its overhead will not be a concern

for using PerfScope to perform online bug inference.

5. Limitation Discussion

Although each individual system call log is relatively small

and scales well with workload intensity, the overhead of stor-

ing traces for many different applications may be significant.

In those cases, system call filtering can be used to reduce the

trace log size. Assuming prior application knowledge, it is

possible to modify PerfScope to only trace certain system

call types or to only trace system calls generated by spe-

cific threads. We can also apply log compression to further

reduce the trace log size. For example, after applying the

standard gzip compression, the HDFS log size goes down

from 227MB to 19MB.

In practice it may be necessary to move the collected

traces from a storage node to a different node for processing,

where the cost is dependent on the network bandwidth. How-

ever, as the size of each collected trace is relatively small,

ranging from about 40MB to about 530MB, we believe these

files can be quickly moved from host to host. Additionally,

optimizations and log compression can further reduce the

cost of moving these logs.

If two functions have identical frequent episode set,

PerfScope will not be able to distinguish between them.

However, in our experiments, we found this case never

happened. Each function always generated unique frequent

episodes. For example, as mentioned in the evaluation, the

SocketInputStream$Reader.performIO produced 29

unique frequent episodes.

Our current evaluation is limited to single node server

setup. For performance bugs in distributed systems, we be-

lieve that PerfScope can help with those bugs by identify-

ing the affected functions on each affected component. In

addition, performance bugs in distributed systems can also

occur as the result of poor interactions between different

system components (e.g., incorrect timeout value). Previous

work [28] has shown that those bugs also exhibit anomalous

application to kernel interactions on the faulty components

in the form of either I/O or locking. How to apply PerfScope

to distributed system performance bugs is part of our future

work.

6. Conclusion

In this paper, we have presented PerfScope, an online per-

formance bug inference tool for production cloud computing

infrastructures. PerfScope can identify bug-related functions

for both interpreted and compiled programs using light-

weight kernel-level system call tracing and online system

call trace analysis. We have implemented PerfScope and

conducted experiments using real performance bugs in seven

popular open source server systems. The results show that

PerfScope can successfully identify true bug-related func-

tions out of tens of thousands of application functions for

all the tested performance bugs. PerfScope is light-weight,

which only imposes 1.8% average runtime overhead to the

tested server systems.

Acknowledgment

We thank the anonymous reviewers and our shepherd Haryadi

Gunawi for their valuable comments. This work was spon-

sored in part by NSF CNS0915567 grant, NSF CNS0915861

grant, NSF CAREER Award CNS1149445, U.S. Army Re-

search Office (ARO) under grant W911NF-10-1-0273, IBM

Faculty Awards and Google Research Awards. Any opinions

expressed in this paper are those of the authors and do not

necessarily reflect the views of NSF, ARO, or U.S. Govern-

ment.

References

[1] Exuberant Ctags. http://ctags.sourceforge.net/.

[2] The IRCache Project. http://www.ircache.net/.

[3] Linux process trace (ptrace).

http://linux.die.net/man/2/ptrace.

[4] SysBench: a system performance benchmark.

http://sysbench.sourceforge.net/.

[5] NCSU Virtual Computing Lab. http://vcl.ncsu.edu/.

[6] R. Agrawal and R. Srikant. Fast algorithms for mining asso-

ciation rules. In VLDB, 1994.

[7] Apache. Apache HTTP Server Project. http://httpd.

apache.org/.

[8] Apache Cassandra. Apache Cassandra. http://cassandra.

apache.org/.

[9] Apache Hadoop. Apache Hadoop. http://hadoop.

apache.org/.

[10] Apache Tomcat. Apache Tomcat. http://tomcat.apache.

org/.

[11] J. Arulraj, P. Chang, G. Jin, and S. Lu. Production-run soft-

ware failure diagnosis via hardware performance counters. In

ASPLOS, 2013.

[12] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating

root-cause diagnosis of performance anomalies in production

software. In OSDI, 2012.

[13] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using

magpie for request extraction and workload modelling. In

OSDI, 2004.

[14] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.

Pinpoint: Problem determination in large, dynamic internet

services. In DSN, 2002.

[15] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.

Correlating instrumentation data to system states: A building

block for automated diagnosis and control. In OSDI, 2004.

[16] D. Dean, H. Nguyen, and X. Gu. UBL: Unsupervised behav-

ior learning for predicting performance anomalies in virtual-

ized cloud systems. In ICAC, 2012.

[17] D. J. Dean, H. Nguyen, P. Wang, and X. Gu. Perfcompass:

Toward runtime performance anomaly fault localization for

infrastructure-as-a-service clouds.

[18] M. Desnoyers and M. R. Dagenais. The lttng tracer: A low

impact performance and behavior monitor for gnu/linux. In

Linux Symposium, 2006.

[19] U. Erlingsson, M. Peinado, S. Peter, and M. Budiu. Fay:

Extensible distributed tracing from kernels to clusters. In

SOSP, 2011.

[20] P. Fournier and M. R. Dagenais. Analyzing blocking to debug

performance problems on multi-core systems. In SIGOPS,

2010.

[21] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumentation and

sampling strategies for cooperative concurrency bug isolation.

In OOPSLA, 2010.

[22] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding

and detecting real-world performance bugs. In PLDI, 2012.

[23] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an

introduction to cluster analysis. John Wiley & Sons, 2009.

[24] Lighttpd. Lighttpd. http://www.lighttpd.net/.

[25] LTTng Success. LTTng Success. https://lttng.org/

success-stories.

[26] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building

customized program analysis tools with dynamic instrumen-

tation. In PLDI, 2005.

[27] MySQL. MySQL. http://www.mysql.com/.

[28] K. Nagaraj, C. E. Killian, and J. Neville. Structured compar-

ative analysis of systems logs to diagnose performance prob-

lems. In NSDI, 2012.

[29] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D.

Nguyen. Understanding and dealing with operator mistakes

in internet services. In OSDI, 2004.

[30] H. Nguyen, Z. Shen, Y. Tan, and X. Gu. Fchain: Toward black-

box online fault localization for cloud systems. In ICDCS,

2013.

[31] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler: detecting

performance problems via similar memory-access patterns. In

ICSE, 2013.

[32] OpenJDK6. OpenJDK6. http://openjdk.java.net/

projects/jdk6/.

[33] D. Patnaik, S. Laxman, B. Chandramouli, and N. Ramakrish-

nan. Efficient episode mining of dynamic event streams. In

ICDM, 2012.

[34] perf. Performance counters for Linux. http://perf.wiki.

kernel.org/index.php/Main_Page.

[35] X. Song, H. Chen, and B. Zang. Why software hangs and what

can be done with it. In DSN, 2010.

[36] P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data

Mining. Addison Wesley, 2005.

[37] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and

D. Rajan. Prepare: Predictive performance anomaly preven-

tion for virtualized cloud systems. In ICDCS, 2012.

[38] A. Traeger, I. Deras, and E. Zadok. DARC: Dynamic analysis

of root causes of latency distributions. In SIGMETRICS, 2008.

[39] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage:

Diagnosing production run failures at the user’s site. In SOSP,

2007.

[40] M. J. Zaki. Spade: An efficient algorithm for mining frequent

sequences. Machine learning, 2001.

