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ABSTRACT
Troubleshooting Software-Defined Networks requires a struc-
tured approach to detect mistranslations between high-level
intent (policy) and low-level forwarding behavior, and a flex-
ible on-demand packet tracing tool is highly desirable on
the data plane. In this paper, we introduce a Layer 2 path
tracing utility named PathletTracer. PathletTracer offers an
interface for users to specify multiple Layer 2 paths to in-
spect. Based on the Layer 2 paths of interests, PathletTracer
then accounts paths with identifiable IDs, and installs a set
of flow table entries into switches to imprint path IDs on the
packets going through. PathletTracer re-uses some fields in
packet headers such as the ToS octet for recording path IDs.
To efficiently carry imprints using limited bits, PathletTracer
uses an encoding algorithm motivated by the calling context
encoding scheme in the software engineering domain. With
k bits for encoding, PathletTracer is able to trace more than
2k paths simultaneously.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer -
Communication Networks- Network Communications

Keywords
Software-Defined Networks (SDN), OpenFlow, Network Mon-
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1. INTRODUCTION
Software-Defined Networking (SDN) enables flexible net-

work management by separating forwarding decisions (in the
control plane) from the forwarding itself (in the data plane).
This allows operators to manage networks using high-level
abstractions that are automatically translated into low-level
functionality [12, 15]. For correct troubleshooting of SDN
operations [9], it is necessary to verify whether the low-level
actions performed by network devices conform to the high-
level policies deployed by operators.
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Figure 1: An example L2 network with seven paths
of interest to be traced.

In this paper we focus on path tracing, a specific operation
for SDN troubleshooting that determines the Layer 2 path
taken by a given packet. Consider the network in Figure 1,
where host A can reach host B via multiple paths. Path trac-
ing allows us to verify whether a packet from host A has taken
the desired route, such as 1->2->3->5->6, to reach host B.
Path tracing can help network operators to improve network
performance (e.g., by comparing various routing options in
load balancing), to validate routing decisions (e.g., by en-
suring that a routing algorithm performs correctly), and to
allocate resource optimally (e.g., by identifying hot and cold
spots in networks).

Existing approaches to determine the Layer 2 path of a
packet in a software-defined network are limited to the con-
trol plane [10, 14, 7] or introduce significant overhead [7,
14]. For example, VeriFlow [10] analyzes the configuration
pushed to network devices to infer forwarding paths and de-
termine inconsistency. However, even if the configuration
is correct, the actual forwarding in the data plane may not
follow the configuration due to bugs in switch software, con-
flicts with existing configuration, or limited memory space
to enforce the configuration [9].
ndb [7] is a network debugger for SDN which emits post-

cards from every switch that the traced packet traverses. A
postcard is a logging packet that contains information about
the traced packet and the flow entry it matched. The net-
work controller collects all postcards and reconstructs the
packet path. The challenge of this approach is the over-
head of logging added to the control plane. OFRewind [14]
records guest network traffic by mirroring those packets on
traversed switches, therefore can trace back the paths they
have taken. Such approach comes with the expense of addi-
tional in-network instrumentation.



We introduce PathletTracer, a Layer 2 path tracing utility
that is both correct and scalable. PathletTracer offers an in-
terface for users to specify multiple Layer 2 paths to trace,
and get the information on which of the traced path a later
packet has taken, or none of them. For correctness, Path-
letTracer records forwarding information in the data plane
as a packet traverses a switch, rather than infer it from
switch configuration. Specifically, PathletTracer associates
each path to be traced with an ID and uses unused bits
(e.g., ToS octets) in a packet’s header to carry the ID of
the path the packet is traversing. Specialized forwarding
rules installed by the centralized controller ensure that each
switch in the network imprints path IDs to packets in transit.
Once a packet has arrived at the destination, PathletTracer
decodes the ID to determine the path traversed.

The scalability of PathletTracer depends on how, where,
and when the centralized network controller enforces the
recording of the path information by the switches. We pre-
serve scalability by making several design decisions about
how we specify and encode paths.

Pathlet tracing. PathletTracer borrows the pathlet idea
from Pathlet Routing [6]. The underlying intuition is that
the number of path segments (i.e., pathlets) is much less
than the number of source-destination combinations, espe-
cially in a virtualized environment where we consider VM-
to-VM paths. This helps reducing the number of IDs that
we encode in the header of traced packets.

Calling context encoding. We use precise calling con-
text encoding (PCCE) [13] to ensure that we can encode
each path within the limited space available in the packet
header. PCCE is a software engineering technique to rep-
resent the calling context, a path of function calls from the
root (e.g., main) function, of a program in concise values at
runtime. PCCE analyzes the structure of a program and
inserts arithmetic operation (e.g., addition) code to update
concise runtime status such that it can be uniquely decoded
relative to a calling context.

There are several challenges when adapting PCCE to en-
code network paths. First, unlike a program which executes
a single piece of code, a network infrastructure consists of a
set of switches which need to be configured and coordinated
in a distributed way. Second, the arithmetic operations used
in PCCE to update runtime status are not supported in ex-
isting OpenFlow table action sets.

PathletTracer presents a set of algorithms to create and
deploy switch forwarding rules for encoding pathlets while
overcoming those problems. The contributions of the paper
are as follows:

• We introduce pathlet tracing, a new and flexible mech-
anism for packet tracing on the SDN data plane.

• We describe a novel Layer 2 path encoding mechanism
using unused octets in a packet header by adopting the
software engineering approach to encode program call-
ing context. For example, as we will show in Section 4,
PathletTracer requires only 2 bits to trace the 7 paths
in the example network shown in Figure 1.

2. BACKGROUND - CALLING CONTEXT
ENCODING

A calling context is the sequence of active function invo-
cations that lead to a program location. This information

Figure 2: An example of PCCE encoding. Edge an-
notations (e.g., +1) represent arithmetic operations
to update encoding values of calling context.

is widely used for various purposes in software engineering
such as profiling, performance optimization, bug detection,
etc. There are several approaches proposed to obtain this
information in an efficient way. Sumner et al. proposed
Precise Calling Context Encoding (PCCE) that provides a
precise encoding of calling context with reliable decoding ca-
pability [13] evolved from path profiling [3]. PCCE encodes
the calling context using a small number of integer identi-
fiers. It inserts code which updates an integer ID so that
the calling context at any program point can be uniquely
represented by the ID along with the program counter.

The algorithm calculates the update values in the static
analysis of the program call graph. Figure 2 shows that
the pair of a program counter (PC) and an ID can uniquely
represent a program path from the root node. For instance,
the ID value is 1 at the function E means that the program
took the path, ACDE, in the execution.

We see several analogies between calling context encod-
ing and pathlet encoding in SDN: (1) the call graph of a
software and the topology of a network, (2) a call site and
a network switch, and (3) a calling context and a network
path. This similarity inspires us to design an on-the-fly en-
coding approach for L2 path encoding called PathletTracer.

3. ARCHITECTURE

Figure 3: The architecture of PathletTracer.

Figure 3 presents the main components of PathletTracer:

• The user interface (UI) can take the following inputs:
the interested paths to be traced and encoded, and the
path ID from a received packet for decoding.



Figure 4: PathletTracer workflow.

• The encoder generates the codebook and the corre-
sponding set of forwarding rules for SDN switches based
on the network topology and paths of interests to stamp
the traversing packets with compact IDs for the paths.

• The decoder will use the codebook from the encoder
to translate the path ID into a hop-by-hop path.

Figure 4 shows an overview of the PathletTracer workflow.
Given a set of pathlets (valid Layer 2 path segments), Path-
letTracer compiles it with a directed acyclic graph model
and applies a path encoding algorithm. This leads to a set
of control messages to add flow table entries on switches for
encoding packets on-the-fly. This process also generates a
codebook to translate a packet ID to a Layer 2 path which
the packet has taken.

In Sections 4 and 5, we describe how PathletTracer encodes
paths and enforces the recording of path IDs in switches.

4. OFFLINE ENCODING

Figure 5: An encoding example with seven paths.

In this section, we describe how we encode network paths
using concepts from the calling context encoding. First, the

encoder builds a forest of directed acyclic graphs (DAGs) by
composing the valid paths to be traced. On each DAG, the
encoder creates a virtual root node, and adds a link from
it to all the nodes with 0 indegree. For example, Figure 5
shows two DAGs by composing the seven paths in Figure 1.
G1 contains only the path 6 → 5 → 3 → 2 → 1 as it does
not share any link with the other 6 paths; G2 contains the
rest of the 6 paths as they share some links between each
other.

Algorithm 1 Path encoding

function Encoding(G = (N,E))
for n ∈ N do

PP [n]← CalculatePossiblePaths(n)

for e ∈ E do
PN [e]← 0

for n ∈ N in a topological order do
for e = 〈p, n〉 of the incoming edges of n do

if e is the first edge then
continue

else
PN [e]← PP [p]

while DepthFirstSearch(G) do
if reach an ending node n of any traced path

through a path p then
ID[p]← sum of each edge’s PN [e] on p

function CalculatePossiblePaths(n)
a← the number of possible paths from the virtual root

node to n
return a

On each DAG, the encoder generates the IDs of the in-
cluded paths. The algorithm starts by traversing the nodes
in a topological order, and computes the path number (PN)
for each edge. With respect to each node n, the PN value
for the first incoming edge is 0; for each of the remaining
edges e : (p → n) the PN value is the sum of the pos-



sible paths from the root node to p. The ID of a path
with respect to a node n is the sum of PNs of all edges
on the path from the virtual root node to n. Algorithm 1
describes the steps. For example, G2 in Figure 5 has all 0-
PN edges except e : (8 → 4) and e : (4 → 5). The ID of
Path 8 → 4 → 5 → 6 is therefore (1 + 2 + 0) = 3 (11 in
binary).

Figure 6: A codebook example on the 7 paths in
Figure 5.

After the encoding, the encoder produces a codebook for
the traced paths. The codebook includes four fields: the
time period T when the path IDs are valid; path identifiers
(ID), the end switch on the path (Site), and the encoded
path (Path). Figure 6 shows an example of the code book
for the 7 paths traced in Figure 5.

The decoder uses the codebook to serve path queries.
When a user sends a query on a path ID i encoded in a
packet received at host x at time t, the decoder first uses
the network topology information to resolve x to the switch
(site) s where x is attached. The decoder then looks up the
codebook with (t, i, s) and returns the full path information
matching the 3-tuple value.

5. ONLINE TRACING

Figure 7: 3 types of switch ingress ports and the
corresponding flow table entry examples for pathlet
tracing.

Next we describe how tracing a path using the path IDs
generated in Section 4 works. After computing the path IDs,
the encoder generates control messages for all switches in the
DAGs to enable online path tracing. These messages cre-
ate rules in switches to imprint the encoded IDs to packets
in transit. While the original PCCE work used arithmetic
addition operations to record this information (e.g., ID =
ID + 4), similar operations on packet header fields are not
supported in existing OpenFlow table action sets; thus we

need to make per-site additions in calling context encoding
OpenFlow-compatible.

We solved this challenge by generating flow table rules
based on the topology relationship with adjacent switches
expressed in terms of ingress ports of each switch.

In general, there are three types of ingress ports on a
switch in the DAGs for path tracing regarding how a switch
is connected to its neighbors : (a) a port that no traced path
traverses, (b) a port traversed by traced paths sharing the
same ID value, and (c) a port traversed by traced paths with
different IDs.

For example, switch i in Figure 7 has the link ending at
its ingress port b in path X, and the link ending at port c in
path Y and Z which have different encoding IDs. Therefore,
the ingress port a of switch i is type (a), port b is type (b),
and port c is type (c). For each type of port, PathletTracer
adds a different set of flow table entries to enable switch i
to imprint the path ID into the ToS bits of packets. Other
fields can be in the matching rules if the traced paths are
associated with specific flows.

For an ingress port of type (a), switch i sets the path
ID field as the default no-path value ID(NULL). When we
choose to use upper 6 bits in the type of service (ToS) field to
carry the path ID information, the encoder adds a flow table
entry to switch i that assigns the value of ID(NULL) to the
ToS bits of all incoming packets on the port. For the first
switch in a DAG (e.g., switch 6 in G1), each of its ingress
ports is type (a) unless that port’s corresponding link is a
traced object (e.g., the ingress port of switch 6 connecting
to 5). When ID(NULL) is chosen as the field default value
(e.g., 0 for ToS) and modifications on such fields are caused
only by path tracing, the control messages and the resulting
table entries for the type (a) ingress ports may be waived.

For an ingress port of type (b), switch i needs to set the
path ID field as the unique path ID value ID(X). The
encoder adds a flow table entry to switch i that sets the
ToS bits of all incoming packets on the port to ID(X). As
an optimization, the encoder does a depth-first search from
the virtual root node, and find the first switch i in every
path whose incoming link has only the paths with ID(X)
traverses into; only i on that path are added with the table
entry for ID(X) setting.

Figure 8: The 4 flow table entries for tracing 7 paths.

We use Figure 1 to illustrate the steps. The encoder will
add four flow table entries for the seven paths. For path
6 → 5 → 3 → 2 → 1, only switch 5 needs to add a table



entry for the path ID 0, as its ingress port connecting to
switch 6 is type (b) and is the first such ingress port along
the path. Similarly, the ingress port on switch 3 (connecting
to switch 2) is type (b) for two paths with ID 0; the ingress
port on switch 4 (connecting to switch 2) is type (b) for two
paths with ID 2; and the ingress port on switch 4 (connecting
switch 8) is type (b) for 2 paths with ID 3. Switch 3 (4) is
the first switch with a type (b) port having only the path
with ID 0 (2 or 3). Actually, these four flow table entries
are the only ones that the encoder needs to create for the
seven paths if we reserve 0 for the default value ID(NULL)
and replace the three paths with ID 0 by the value 1.

For an ingress port of type (c), the encoder first checks
whether any of the incoming paths traverses an ingress port
of type (b) prior to reaching the current port. Such paths
are then removed from consideration. If the path set be-
comes empty, no flow table entries are required. Otherwise,
the encoder adds a set of entries to realize the ID addition
operations if the PN value of the edge e ending at this port
is not 0. The encoder searches the path from the virtual
root node to the switch i for all non-0 PN values excluding
PN(e). For each possible combination of those PN values
and value 0, we create a flow entry that matches all incoming
packets with ToS value equal to the sum of the PN values in
the combination and modifies the ToS value to be the sum
of values in the combination plus PN(e).

Figure 9: An example of type (c) ingress ports and
the corresponding flow table entries.

For example, Figure 9 shows four paths for tracing and its
DAG. Described in Section 4, the offline encoding algorithm
will assign the paths IDs (0,1,2,3), and all edges with PN
value 0 except the edges 3 → 4 (PN = 1) and 6 → 7
(PN = 2). For convenience, we also label each edge with
the IDs of the paths traversing it. As none of the four paths
traverses any type (b) ingress port, the encoder creates flow
table entries in switches 4 and 7 which have incoming edges
with non-zero PN . For switch 4, only one entry is created
to stamp the ToS field with the PN value 1. As for switch 7,
two entries are created for the PN combinations of 1, 0, and
accordingly stamp the ToS field with the value (1+0+2) = 3
and (0 + 2) = 2.

Using the forwarding rules and actions for the three types
of ingress ports, PathletTracer tracks the packets traversing
the encoded paths. If a packet traverses an encoded path

completely, its imprint will be that path’s ID. Otherwise, it
is set with the value ID(NULL).

6. DISCUSSION
The work presented in this paper is only a starting point

toward a fully fledged realization of the PathletTracer archi-
tecture. In this section, we discuss several open issues in its
design.

Path ID collection. A destination node (e.g., a VM)
requires a method to collect the path IDs embedded in the
headers of its interested packets. One method is running tcp-
dump within the node. Another method from network op-
erator side is running tcpdump on Open vSwitch (OVS) [1],
the de facto software switch running within the hypervisor.
A third method is the postcard collection idea in ndb [7] but
applied only onto the last switch in a traced pathlet.

ToS limitations. Using the ToS field could be a prob-
lem, both in terms of the number of bits, and because there
are often QoS-related usages for that field. FlowTags [4]
has suggested several ways to overcome the limitations from
encoding with the ToS field. For example, one option is
to extend OpenFlow to match on the 16-bit IP ID field (if
fragmentation is disabled), or to use the 20-bit flow-label in
IPv6.

Admission control for tracing. PathletTracer has to
take admission control and reject some pathlet tracing re-
quests when it runs out of encoding bits and/or flow-table
space. A simple admission control policy can be request ar-
rival time based, and more complicated policies may take
factors such as user priority and pathlet lengths into consid-
eration.

Multiple tables. Since V1.1, OpenFlow switches intro-
duce a flexible pipeline with multiple tables. Packets are
processed through the pipeline; they are matched and pro-
cessed in the first table, and may be matched and processed
in other tables afterwards. As the flow-table entries from
PathletTracer is only for tracing purpose, they can be posi-
tioned in the beginning of such a pipeline, therefore will not
affect the rest of actions for routing, access control lists, rate
limiters, etc.

Tracing layers. While we present PathletTracer in a
Layer 2 network, the pathlet tracing idea can also be ap-
plied to a L2 + L3 network under a single operator’s ad-
ministration (e.g., a data center network). For OpenFlow
routers, PathletTracer can treat them the same as switches
in calculating path IDs and installing new flow table entries.

Multi-path routing. There can be many possible paths
between a pair of hosts in a network architecture supporting
multi-path routing. For example, there are 576 equal-cost
paths between any given pair of hosts in different pods of
a fat tree built from 48-port GigE switches [2]. To trace
all P paths between a pair of hosts in a fat-tree network,
PathletTracer has to use log(P ) bits to encode the paths as
they will compose one DAG. The edge-tier switch connecting
the destination host has to use θ(P ) entries as all its up links
to the aggregation tier are with type (c) ports where P paths
traverse. When tracing multiple sources to the destination
host, the required encoding bits will grow logarithmically
with the number of sources, and the flow table entries used
by the edge-tier switch connecting the destination host will
grow linearly with that.



7. RELATED WORK
Troubleshooting SDNs. A number of solutions, such

as Anteater [11], VeriFlow [10], and Libra [16], have been
proposed to troubleshoot SDNs. These works focus mainly
on the elimination of configuration conflicts, the avoidance
of routing loops and black holes, the detection of policy in-
consistency, and are complementary to PathletTracer. Path-
letTracer can be combined with them or incorporated into
such open-platform solutions as a critical component for val-
idating the actual Layer 2 paths. PathletTracer provides a
scalable real-time Layer 2 path tracing function as a essen-
tial feature in SDN troubleshooting.

Network Tracing Utilities. Carrying information in
packet headers for tracing is not a new idea. For example,
X-Trace [5] is a tracing framework designed to reconstruct
an Internet service’s task tree by propagating task ID meta-
data across layers and across applications. FlowTags [4] adds
tags to outgoing packets for systematic policy enforcement
on switches and middleboxes. Compared to them, Pathlet-
Tracer does not require on-path logging of traced packets.
Among the existing SDN troubleshooting solutions, Pathlet-
Tracer has some overlap with systems such as ndb [7] and
NetSight [8]. A unique contribution from PathletTracer is
that it traces the ground-truth data-plane forwarding paths
and its pathlet-oriented tracing reduces the overhead in the
control plane significantly, i.e., O(P) with P referring to the
number of paths subject to inspect rather than O(p) or
O(f) where p and f denote the numbers of packets and
flows respectively.

8. CONCLUSION
This paper presented the design of a new Layer 2 path

tracing inspired by calling context encoding, a software en-
gineering approach, to encode packet forwarding in the data
plane using programmable SDN switches. Its pathlet-oriented
design allows scalability and flexibility in troubleshooting
data plane problems. With many open issues motivating
our future exploration, we believe that PathletTracer com-
plements existing SDN trouble-shooting and measurement
tools by providing a simple yet effective packet tracing so-
lution.
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