
LogLens: A Real-time Log Analysis System

Biplob Debnath∗, Mohiuddin Solaimani†, Muhammad Ali Gulzar†, Nipun Arora†,
Cristian Lumezanu∗, Jianwu Xu∗, Bo Zong∗, Hui Zhang§†, Guofei Jiang§†, and Latifur Khan‡

∗NEC Laboratories America, Inc., Princeton, New Jersey, USA
‡CS Department, The University of Texas at Dallas, USA

§ Ant Financial, Hangzhou, China

Email: biplob@nec-labs.com, solaimani.rakib@gmail.com, gulzar@cs.ucla.edu, nipun@dropbox.com

{lume,jianwu,bzong}@nec-labs.com, shengchu.zh@antfin.com, geoff.jiang@yahoo.com, lkhan@utdallas.edu

Abstract—Administrators of most user-facing systems depend
on periodic log data to get an idea of the health and status
of production applications. Logs report information, which is
crucial to diagnose the root cause of complex problems. In this
paper, we present a real-time log analysis system called LogLens
that automates the process of anomaly detection from logs with
no (or minimal) target system knowledge and user specification.
In LogLens, we employ unsupervised machine learning based
techniques to discover patterns in application logs, and then
leverage these patterns along with the real-time log parsing for
designing advanced log analytics applications. Compared to the
existing systems which are primarily limited to log indexing and
search capabilities, LogLens presents an extensible system for
supporting both stateless and stateful log analysis applications.
Currently, LogLens is running at the core of a commercial log
analysis solution handling millions of logs generated from the
large-scale industrial environments and reported up to 12096x
man-hours reduction in troubleshooting operational problems
compared to the manual approach.

I. INTRODUCTION

Log analysis is the process of transforming raw logs – writ-

ten records of software systems events – into information that

helps operators and administrators to solve problems [1, 2].

Log analysis is used in a variety of domains such as detecting

security threats [3, 4, 5], compliance auditing [6], power plant

fault detection [7], or data center operations [8, 9, 10, 11, 12].

The ability to analyze logs quickly and accurately is critical to

reduce system downtime and to detect operational problems

before or while they occur.

A critical aspect of a log that enables fast and accurate

analysis is its structure. Recognizing the structure of a log

greatly helps in easy extraction of specific system information,

such as the type, time of creation, source of a specific

event, the value of key performance indicators, etc. Without a

known log structure, log analysis becomes a simple keyword-

based text search tool. In fact, most commercial log analytics

platforms today [13, 14] allow users to directly specify log

patterns or to generate models based on domain knowledge.

While supervised log analysis can help extracting important

insights without ambiguity, it also has several shortcomings:

a) it is specific to what the user seeks and focuses on known

errors and b) it cannot easily adapt to new data sources and
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formats. As more new devices and data formats enter the

market (Gartner, Inc. forecasts that 20.4 billion IoT units will

be in use worldwide by 2020 [15]), it becomes increasingly

difficult for the supervised log analysis tools to keep track and

adapt to new log structures and identify unknown anomalies.

In this paper, we describe LogLens, a log analysis sys-

tem to automatically detect operational problems from any
software system logs. Rather than taking the log structure

as an input, LogLens automatically learns structures from

the “correct logs” and generates models that capture normal

system behaviors. It subsequently employs these models to

analyze production logs generated in real-time and detects

anomalies. Here, we define anomaly as a log or group of

logs that do not match the normal system behavior models.

LogLens requires no (or minimal) user involvement and adapts

automatically to new log formats and patterns as long as users

can provide a set of logs for building models against which

anomalies are detected.

LogLens classifies anomaly detection algorithms into two

major groups: stateful and stateless. Stateless anomalies arise

from analyzing a single log instance, while stateful anomalies

appear when a combination of multiple logs does not match the

trained model. For example, identifying errors or warnings in

operational logs do not require keeping state about each log. In

contrast, identifying maximum duration violation of a database

transaction requires storing start event time of the transaction

so that when an end event of the same transaction comes,

anomalies can be detected by calculating the duration of the

transaction. LogLens presents one exemplary stateless algo-

rithm and one exemplary stateful algorithm. The exemplary

stateless algorithm is a log parser, which parses logs using

patterns discovered during system normal runs and reports

anomalies if streaming logs cannot be parsed using discovered

patterns. This stateless parser can parse logs up to 41x faster

than the Logstash [16], which is a widely used log parsing

tool. The exemplary stateful algorithm discovers relationships

among log sequences representing usual operational workflows

from the system normal runs and reports anomalies in the

streaming logs. This stateful algorithm can handle heteroge-

neous log streams and can automatically discover ID fields to

link multiple logs corresponding to an event.

To analyze massive volumes of logs with zero-downtime,
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we deploy LogLens on top of the Spark [17] framework.

While Spark provides a low latency and high throughput

data processing platform, our experience in building large

scale log analysis system reveals that Spark lacks several

key features needed to deploy LogLens as a real-time service

with zero-downtime. In particular, its immutable broadcasting

feature [18] forces us to restart service in order to update the

learned models in a running system, thus we can not guarantee

zero-downtime. Moreover, stateful algorithms need external

stimuli for efficient memory management and timely anomaly

detection. As a remedy, LogLens introduces a rebroadcasting

mechanism. In addition, it proposes to add an external heart-

beat controller for efficiently managing open states and for

immediately reporting anomalies.

The rest of this paper is organized as follows: Section II

describes our LogLens architecture. Section III describes our

stateless log parsing algorithm. Section IV describes our

stateful log sequence anomaly detection algorithm. Section V

describes the challenges we faced and solutions adopted for

deploying LogLens as a service. Section VI shows our ex-

perimental results. Section VII describes two case-studies of

LogLens deployment in solving real-world problems. Finally,

Section VIII states the conclusion and lesson learned followed

by a bibliography.

II. LOGLENS ARCHITECTURE

In this section, we present the system architecture of

LogLens and the rationale behind our design choices.

A. Design Goals

The design of LogLens is driven by the following goals:

• Handling heterogeneous logs. Logs may have a variety

of formats depending on their sources and what they are

trying to convey. An automated log analyzer should be able

to handle any log formats irrespective of its origin.

• Minimizing human involvement. Ideally, an automated

log analyzer should work from scratch without any prior

knowledge. For logs from the new sources, it should not

mandate any human involvement. To this end, LogLens
leverages unsupervised machine learning based techniques.

Human interaction is limited to providing “training” logs,

which captures “correct” behaviors. LogLens learns various

models from this training dataset and uses them later to

detect anomalies. In addition, LogLens provides options to

the users to incorporate their domain knowledge in order to

improve the accuracy of the anomaly detection algorithms.

• Providing a generic system. We aim to design a generic

system which captures most real-world use cases and

challenges. To this end, LogLens presents two exemplary

anomaly detection algorithms. The first algorithm is state-

less, while the second algorithm is stateful. LogLens presents

a stateless log parser, which is a core component to design

any log analysis algorithm. Usually, stateful algorithms are

more complex and need quite an effort to implement effi-

ciently – LogLens presents a log sequence anomaly detector

to demonstrate various real-world challenges.

• Handling data drift. System behavior typically evolves

over time. Hence, log data characteristics and behavior

models may also change. To this end, LogLens periodically

relearns models to adapt to system behavior change.

• Expediting stateful anomaly detection. Real-time anomaly

detection algorithms are generally event-driven. Thus, in the

absence of logs, some anomalies cannot be detected in time.

LogLens ensures that all anomalies are reported in time by

leveraging an external heartbeat controller which generates

dummy messages periodically.

• Deploying log analysis as a service. We aim to design a

system which can handle high volume and high velocity of

the log streams in real-time. However, we want to leverage

existing open-source data processing frameworks to min-

imize implementation and deployment effort. In addition,

we want to guarantee zero-downtime (i.e., no service dis-

ruption). To this end, LogLens chooses Spark [17] big data

processing framework because of its maturity, huge echo

system and community support, and widespread adoption

in the industry and academic realms. However, we find that

even Spark (as well as similar frameworks, i.e., Flink [19],

Samza [20], etc.) does not have all necessary features to

deploy a log analysis service (see Section V). Finally,

LogLens enhances the Spark framework to satisfy our design

goals.

B. Architectural Components

Figure 1 illustrates the architecture of LogLens. Now, we

briefly describe each component.

Agent is a daemon process which collects heterogeneous logs

from multiple sources and sends them to the log manager.

Log Manager receives logs from agents. It controls incoming

log rate and identifies log sources. It forwards incoming logs

to the parser. It also stores them into the log storage.

Log Storage is the main storage or archival component. It

organizes logs based on the log source information. Stored

logs can be used for building models during log analysis. They

can also be used for future log replaying to perform further

analysis, or for post-facto querying when troubleshooting

operational problems.

Model Builder generates models for the anomaly detection.

It takes a set of training logs assuming that they represent

normal behavior and uses unsupervised machine learning

based techniques to build models. To adapt to system behavior

change, periodically it collects logs from the log storage for

relearning models and stores them on the model storage.

Model Storage stores models. All the anomaly detectors read

models directly from the model storage.

Model Manager retrieves model information from the model

storage and notifies the controller to update a model. LogLens
supports both automatic and human interaction inside model

manager. For example, users can configure LogLens to au-

tomatically instruct model builder every midnight to rebuild

models using the last seven days logs. In addition, model
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Fig. 1: LogLens architecture showing major components and operational workflows.

manager allows human experts to inspect models and edit them

to incorporate domain knowledge.

Model Controller gets notifications from the model manager

and sends control instructions to the anomaly detectors. Mod-

els can be added or updated or deleted, and each operation

needs a separate instruction which contains detail information

about the steps that need to be executed. Anomaly detectors

read control instructions and take action accordingly.

Log Parser takes streaming logs and log-pattern model from

the model manager as input. It parses logs using patterns

and forwards them to the log sequence anomaly detector.

All unparsed logs are reported as anomalies and presented

to the user for further review. Log parser is an example

implementation of the stateless anomaly detection algorithm.

We describe it in detail in Section III.

Log Sequence Anomaly Detector detects anomalous log

sequence of an event (or transaction), which consists of a

sequence of actions and each action is represented by a log. It

is a stateful algorithm which detects malfunctioned events by

analyzing abnormal log sequences based on an automata-based

model. We describe it in detail in Section IV.

Heartbeat Controller periodically sends heartbeat (i.e., echo

or dummy) messages to the log sequence anomaly detector.

These messages aid to report anomalies in time and to identify

open states in a transaction.

Anomaly Storage stores all anomalies for human validation.

Each anomaly has a type, severity, reason, timestamp, asso-

ciates logs, etc.

Visualization Dashboard provides a graphical user interface

and dashboard to the end users. It combines information from

log storage, model storage, and anomaly storage to present

anomalies to the users. Users can easily view anomalies and

take actions to rebuild or edit models. It also allows users to

run complex analysis by issuing ad-hoc queries.

Most components described above can be implemented us-

ing many different open-source products. LogLens uses Spark

big data processing framework. It uses Kafka [21] for shipping

logs and communicating among different components. For the

storage, it uses Elasticsearch [14] a NoSQL database. Elastic-

search provides a very useful query facility that can be used

for data exploration. Furthermore, it has close integration with

Kibana [22], which provides a tool for building visualization

front-ends and writing interactive ad-hoc queries.

Now, we describe our exemplary anomaly detection al-

gorithms in Section III and Section IV, and deployment

challenges and solutions in Section V

III. STATELESS: LOG PARSER

For an automated log analysis system, a core step is to

parse raw logs and make them structured so that various

log analysis tasks could be carried out by leveraging the

structured form of the raw logs. LogLens parses logs using

patterns learned from the systems normal runs. Here, we define

pattern as a GROK expression [23]. For example, for the log

“Connect DB 127.0.0.1 user abc123”, one of the matching

GROK patterns is “%{WORD:Action} DB %{IP:Server} user
%{NOTSPACE:UserName}” and after parsing LogLens pro-

duces {“Action”: “Connect”, “Server”: “127.0.0.1”, “User-
Name”:“abc123”} as a parsing output in JSON format. Parsed

outputs can be used as a building block for designing various

log analysis features. For example, our stateful algorithm (see

Section IV) uses them to detect log sequence violations.

Challenges. Automatically parsing heterogeneous logs with-

out human involvement is a non-trivial task. LogLens parses

logs in two phases: 1) it discovers a set of GROK patterns

from a set of logs representing system normal runs and 2) it

parses logs using these GROK patterns.

Existing log analysis tools either use predefined regular

expressions (RegEx) or source-code level information for log

parsing [11, 16, 24]. Thus, these tools are supervised and

need human involvement – they cannot be used for the first

phase. Our earlier work, LogMine [25], shows how to discover

patterns without any human involvement by clustering similar

logs. LogMine uses tokenized logs and datatypes of the tokens
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during the similarity computation step. However, identifying

some tokens, especially timestamp identification is a very

challenging task. In addition, LogMine may fail to meet user

needs as it is very hard to automatically infer semantics of a

field in the GROK pattern.

In the second phase, we need a tool to parse incoming logs.

We can use Logstash [16], an industrial-strength open-source

log parsing tool, which can parse logs using GROK patterns.

However, we find that Logstash suffers from two severe

scalability problems: 1) it cannot handle a large number of

patterns and 2) it consumes huge memory (see Section VI-A).

Since LogLens discovers patterns with no (or minimal) human

involvement, it can generate a huge number of patterns which

is very problematic for the Logstash.

Solution. LogLens provides an efficient solution for identify-

ing timestamps and to meet user expectation it allows users

to edit/modify automatically generated GROK patterns. For

the fast parsing, LogLens transforms both logs and patterns

into their underlying datatypes and builds an index for quickly

finding the log-to-GROK mapping. Now, we describe log

parsing workflow in detail.

A. Model Building

1) Tokenization: LogLens preprocesses a log by splitting

it into individual units called tokens. Splitting is done based

on a set of delimiters. The default delimiter set consists of

white space characters (i.e., space, tab, etc.). LogLens also

allows users to provide delimiters to overwrite the default

delimiters in order to meet their needs. In addition, users can

provide regular expression (RegEx) based rules to split a single

token into multiple sub-tokens. For example, to split the token

“123KB” into sub-tokens “123” and “KB”, user can provide

the following RegEx rule: “[0-9]+KB” =⇒ “[0-9]+ KB”.

2) Datatype Identification: During this step, for every token

LogLens identifies its datatype based on the RegEx rules.

Table I shows the sample RegEx rules for identifying different

datatypes in LogLens.

Datatype Regular Expression (RegEx) Syntax
WORD [a-zA-Z]+

NUMBER -?[0-9]+(.[0-9]+)?
IP [0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}

NOTSPACE \S+
DATETIME [0-9]{4}/[0-9]{2}/[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}.[0-9]{3}
ANYDATA .*

TABLE I: Syntax for various data types. Notation is adopted

from the Java Pattern API [26].

Challenge. LogLens identifies timestamps and unifies them

into a single format “yyyy/MM/dd HH:mm:ss.SSS” corre-

sponding to the DATETIME datatype. However, we find

that it is a very cumbersome process due to the hetero-

geneity of timestamp formats used in various logs. For ex-

ample, timestamp “2016/02/23 09:00:31” can be expressed

in “2016/23/02 09:00:31” or “2016/23/02 09:00:31.000” or

“Feb 23, 2016 09:00:31” or “2016 Feb 23 09:00:31” or

“02/23/2016 09:00:31” or “02-23-2016 09:00:31” and so on.

LogLens allows users to specify formats to identify timestamp

related tokens. It uses Java’s SimpleDateFormat [27] notation

to specify a timestamp format. However, if users do not specify

any format, LogLens identifies timestamps based on a set of

predefined formats (for example, MM/dd HH:mm:ss, dd/MM

HH:mm:ss:SSS, yyyy/MM/dd HH:mm:ss.SSS etc.). Users can

also add new formats in the predefined list. The worst case

time complexity of identifying timestamp is O(k), where k
is the total number predefined formats or the total number of

user-specified formats.

Solution. LogLens uses the following two optimizations to

quickly identify tokens related to the timestamp formats:

• Caching matched formats. LogLens maintains a cache to

track the matched formats. Caching reduces the amortized

time complexity to O(1). To identify timestamp related

tokens in a log, first, LogLens finds if there is a cache hit.

In case of a cache miss, LogLens checks the non-cached

formats and if a match found, then the corresponding format

is added to the cache. This simple caching strategy works

well in practice as logs from the same (or similar) sources

use same formats, and every source uses only a few different

formats to record timestamps.

• Filtering. LogLens maintains a set of keywords based on

the most common form of specifying month (i.e., jan-

dec, january-december, 01-12, 1-9) , day (i.e., 01-31), and

hour (i.e., 00-59), day of the week (i.e., mon-sun, monday-

sunday), etc. It uses these keywords to filter out tokens

which cannot be related to a timestamp. If a token cannot be

filtered, then only LogLens checks the predefined formats.

3) Pattern Discovery By Clustering Similar Logs: In this

step, LogLens clusters preprocessed logs based on a similarity

distance using LogMine [25] algorithm. All logs within a

cluster are merged together to generate one final pattern in

the form of a GROK expression. LogLens assigns a field

ID for each field. The field ID consists of two parts: 1) the

ID of the log pattern that this field belongs to and 2) the

sequence number of this field compared to other fields in the

same pattern. The log format pattern IDs can be assigned

with the integer number 1, 2, 3, ... m for a log pattern

set of size m. The field sequence order can be assigned

with the integer number 1, 2, 3, ... k for a log pattern

with k variable fields. For example, for the log “2016/02/23

09:00:31 127.0.0.1 login user1” the corresponding generated

GROK pattern would be “%{DATETIME:P1F1} %{IP:P1F2}
%{WORD:P1F3} user1”.

4) Incorporating Domain Knowledge: LogLens automati-

cally generates patterns, therefore it may not always meet

user needs. In addition, users may want to generate patterns

from one system and later want to apply them to a different

system with some minor modifications. A user may even

want to delete some patterns or add new patterns or edit

datatypes. To solve these issues, LogLens allows users to

edit automatically generated patterns. It supports the following

editing operations:

• LogLens allows users to add the semantic meaning of a field
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by renaming its generic name. For example, LogLens may

assign “P1F1” as a generic field name for the “logTime”

field, thus it may be difficult for users to interpret the

parsed output. By renaming “P1F1” to “logTime”, users can

easily fix this problem. To ease renaming effort, LogLens
uses a heuristic based approach to leverage commonly

used patterns found in the logs. For example, LogLens
automatically renames “PDU = %{NUMBER:P1F1}” as

“PDU = %{NUMBER:PDU}”. If none of the heuristics

matches, then only LogLens assigns a generic name.

• LogLens allows users to specialize a field. For example, a

user can specialize “%{IP:P1F2}” by replacing it with the

fixed value “127.0.0.1”.

• LogLens allows users to generalize a specific token

value. For example, a user can generalize “user1” to

“%{NOTSPACE:userName}” in order to convert it into a

variable field.

• LogLens allows users to edit datatype definition to include

multiple tokens under one field. To support this feature, it

introduces the ANYDATA (i.e., wildcard) datatype, which

is defined in Table I.

B. Parsing Logs and Anomaly Detection

LogLens uses patterns discovered during modeling stage for

parsing logs. If a log does not match with any patterns, then

it is reported as an anomaly.

Problem Definition. Log parsing problem using a set of

patterns can be formalized as follows: given a set of m
GROK patterns and a set of n logs, find out the log-to-pattern
mappings. A naı̈ve solution scans all m patterns to find a match

for every log. This simple algorithm needs on the average m
2

comparisons for the matched logs, while for the unmatched

logs it incurs m comparisons. So, the overall time complexity

is O(mn). LogLens aims to reduce the number of comparisons

to O(1), thus the overall time complexity reduces to O(n).

Solution Sketch. LogLens leverages the fact that logs and pat-

terns have the common underlying datatypes representing their

structures, thus it can build an index based on these structures

to quickly find the log-to-pattern mapping. LogLens maintains

an index in order to reduce the number of comparisons by

using the following three steps:

1) Finding candidate-pattern-group. To parse a log,

LogLens first generates a log-signature by concatenating

the datatypes of all its tokens. For example, for the

log “2016/02/23 09:00:31.000 127.0.0.1 login user1” the

corresponding log-signature would be “DATETIME IP

WORD NOTSPACE”. Next, LogLens finds out if there is a

candidate-pattern-group which can parse the log-signature.

2) Building candidate-pattern-group. If no group found,

first LogLens builds a candidate-pattern-group by compar-

ing an input logs log-signature with all GROK m patterns

using their pattern-signatures (explained later) to find

out all potential candidate patterns and put all candidate

patterns in one group. In a group, patterns are sorted in

the ascending order of datatype’s generality and length

(in terms of number of tokens). If no candidate pattern

is found, then the candidate-pattern-group is set to empty.

Next, LogLens adds this group in a hash index using log-
signature as the “key”, and candidate-pattern-group as the

“value”. Finally, it follows Step 3.

3) Scanning the candidate-pattern-group. If a candidate-
pattern-group is found, LogLens scans all patterns in that

group until the input log is parsed. If an input log cannot be

parsed or group has no patterns (i.e., empty), then LogLens
reports it as an anomaly.

Pattern-Signature Generation. LogLens generates a pattern-
signature from each GROK pattern as follows. First, it

splits a pattern into various tokens separated by white space

characters. Next, it replaces every token by its datatype.

For example, the token “%{DATETIME:P1F1}” is replaced

by its datatype “DATETIME”. If datatype is not present

in the token, then LogLens finds out the datatype of the

token’s present value. For example, the token “user1” is

replaced by “NOTSPACE” by using the RegEx rule defined

in Table I. Thus, the pattern-signature of the GROK pat-

tern “%{DATETIME:P1F1} %{IP:P1F2} %{WORD:P1F3}
user1” would be “DATETIME IP WORD NOTSPACE”.

How to compare log-signature with pattern-signature? If

a log-signature is parsed by a pattern-signature, then corre-

sponding GROK pattern is added to the candidate-pattern-
group. There are two cases to consider for the pattern-
signature: without and with the ANYDATA datatype (i.e.,

wildcard). The first case (i.e., without) is easy to handle,

while the second case is challenging due to the variability

arising from the presence of wildcard. LogLens solves this

problem with a dynamic programming algorithm. It can be

formally defined as follows: given a log-signature of length

r tokens, L =< l1, l2, ..., lr > and a pattern-signature of

length s tokens, P =< p1, p2, ..., ps >, we have to find

out if L can be matched by P . Let us define T [i, j] to the

boolean value indicating whether < l1, l2, ..., li > is parsed by

< p1, p2, ..., pj > or not. This matching problem has optimal

substructure, which gives the following recursive formula:

T [i, j] =

⎧⎨
⎩

true if i = 0 and j = 0
T [i − 1, j − 1] if li = pj or isCovered(li, pj)
T [i − 1, j] ‖ T [i, j − 1] if pj = ∗

Here, isCovered(li, pj) is a function, which returns true if

the RegEx definition corresponding to li’s datatype is covered

by the RegEx definition of the pj’s datatype. For example,

isCovered(“WORD”, “NOTSPACE”) returns true. In contrast,

isCovered(“NOTSPACE”, “WORD”) returns false. Based on

the above formulation, LogLens uses dynamic programming

to compute the solution in a bottom-up fashion as outlined in

Algorithm 1. If T [r, s] is true, then LogLens adds the GROK

pattern corresponding to P in the candidate-pattern-group.

IV. STATEFUL: LOG SEQUENCE ANOMALY DETECTOR

Log sequence anomaly detector detects abnormal log se-

quence in an event (or transaction). Here, we define an event

as follows: an event is an independent operational work unit of
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Algorithm 1 Dynamic Programming Algorithm

procedure ISMATCHED

Input: String logSignature, String patternSignature

Output: boolean (i.e., true/false)

String L[] = logSignature.split(“ ”);

String P[] = patternSignature.split(“ ”);

boolean T[][] = new boolean[L.length+1][P.length+1];

T[0][0] = true;

for (int i = 1; i < T.length; i++) do
for (int j = 1; j < T[0].length; j++) do

if (L[i-1].equals(P[j-1])) then
T[i][j] = T[i-1][j-1];

else if (P[j-1].equals(“ANYDATA”)) then
� Handling wildcard case

T[i][j] = T[i-1][j] ‖ T[i][j-1];

else if (isCovered(L[i-1], P[j-1])) then
� Is log-token covered by pattern-token?

T[i][j] = T[i-1][j-1];

end if
end for

end for
return T[L.length][P.length];

end procedure

a business process with a finite action sequence. For example,

cloud data center provides users to access, instantiate virtual

machines, assign resources, and so on. It executes each of

the above tasks by coordinating multiple internal services

distributed on different servers. It generates logs for each of the

action (i.e., start VMs, contact scheduler, resource manager,

hypervisors, etc.) forming an event. Thus, each event has logs

from multiple sources following a sequence. The malfunc-

tioning event follows unusual/deviated action sequence, which

may lead to system failure. However, traditional stateless

anomaly detection techniques dealing with individual logs

do not catch these failures because individual logs may not

be anomalous although altogether they follow an abnormal

sequence. This requires a stateful algorithm to dig abnormal

event log sequences by storing all intermediate log sequence

information in memory/state.

Challenge. Logs in an event may not be always homogeneous.

Thus, detecting anomalous log sequence from incoming logs

is a challenging problem as it requires to discover events and

to preserve log sequence information (i.e., state) in memory.

Most of the log sequence anomaly detectors [11, 28, 29, 30,

31] are supervised as they need human input for discovering

events and do not work for heterogeneous logs. Some research

works use unsupervised learning [4, 5, 10], but they are not

domain-agnostic to handle heterogeneous logs. Here, our goal

is to design a generic unsupervised algorithm for handling

heterogeneous logs.

Solution. LogLens describes a log sequence based anomaly

detection algorithm that discovers event automatically using a

finite state automaton (FSA) based model. LogLens has two

Fig. 2: Sample event trace logs.

Fig. 3: Sample automaton for an event from the logs of Figure

2. It has the rule of min/max occurrence of each state s and

min/max time duration of an event. Each state corresponds to

a log in that event.

phases: learning and detection. During the learning phase,

it builds a model that captures the normal behavior of an

event. First, it discovers event ID Fields automatically from

the heterogeneous logs by leveraging the fact that log parser

has already identified the log format and parsed logs into

various fields. Next, it builds automata which have rules that

represent the normal event log sequences. For example, Figure

2 shows some logs representing two events with event ID Field

discovered by LogLens. Figure 3 shows corresponding au-

tomata with discovered rules, where each state corresponds to

a log in an event. During detection phase, LogLens uses this

automatically discovered automata model to detect anomalies.

Now, we briefly describe these two phases.

A. Model Building

1) Automatic Event ID Field Discovery: Log Parser (de-

scribed in Section III) parses logs and sends them to the log

sequence anomaly detector. Each parsed log has a log pattern

and a field set. LogLens discovers a unique ID Field from these

parsed logs in an event by leveraging the fact that ID appears

the same in multiple logs in an event. LogLens uses a variant

of the Apriori based [32] technique, however the key challenge

for LogLens is to discover events from a large volume of logs

with varying formats. LogLens has following two main steps:

• Building a reverse index. LogLens builds a reverse index

of log fields based on their field content. First, it extracts all

field contents from a parsed log. Next, it builds a reverse

index table. Each field content is a key and a list of logs

with (log pattern, field) pair as a value in the table.

• ID Field discovery. LogLens discovers ID Field for all

possible log patterns by scanning the reverse index. For each
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possible event ID content, it builds a list of (log pattern,

field) pair for all logs that have this ID content. This gives

multiple lists and LogLens builds a set of unique lists. If any

list covers all log patterns discovered in the training logs,

then LogLens assigns it to an event ID Field.

2) Event Automata Modeling: In this step, LogLens pro-

files automata with rules from logs using ID Fields. It scans

through each log and extracts its ID Field and content.

LogLens also keeps track of the log arrival time. For an

ID Field content, it keeps a sorted list of log patterns with their

fields. Finally, it merges them and builds automata with rules.

An automaton is built with states. Each log pattern with its

ID Field is a state which stores log arrival time, the number of

occurrences, etc. Each automaton has a begin, an end, and mul-

tiple intermediate states. LogLens also tracks the occurrence of

the intermediate states and the duration between the begin and

the end state. After building automata, LogLens profiles the

minimum and maximum of those statistics (min/max duration

of an event, min/max occurrence of the intermediate states,

etc.) and uses them as rules for detecting anomalies.

B. Anomaly Detection

LogLens collects incoming logs in real-time. First, it extracts

log pattern and ID from each log. It groups all logs that have a

common Field ID. After that, it sorts logs in each group based

on their arrival time – this gives incoming log sequence in an

event. Next, it scans logs in each group and validates them

against the automata rules discovered during model learning.

Logs in a sequence will be flagged as anomalies if they violate

any of these rules. Table II shows various anomaly types

reported by LogLens.

Type Anomaly
1 Missing begin/end state
2 Missing intermediate states

3
Min/Max occurrence violation
of the intermediate stats

4
Min/Max time duration violation
in between the begin state and the end state

TABLE II: Sample log sequence anomalies.

V. LogLens AS A SERVICE: CHALLENGES AND SOLUTIONS

In this section, we highlight two key real-world deployment

challenges that we encountered when implementing LogLens
as a service using Spark [17]. We believe that these challenges

and our proposed generic solutions will offer insights for

building similar services in the near future.

A. Supporting Dynamic Model Updates

Challenges. Spark’s data parallel execution model uses broad-
cast variables to load models and distribute data to all workers.

However, broadcast variables have been designed to be im-

mutable and can only be updated before data stream processing

is started. The only possible way to update a model in Spark is

to re-initialize and re-broadcast the model data to all workers.

Unfortunately, this process can lead to drastic consequences:

1) it introduces a downtime of several seconds, if not minutes,

depending on the size of the cluster; 2) restarting the cluster

requires rescheduling and redistribution of data and memory

leading to significant decrease in the throughput of the cluster;

and 3) if a stateful Spark streaming service is terminated, all

the state data is lost and losing states can have significant

impact on the efficacy of the anomaly detection algorithms.

To eliminate any possibility of downtime or loss of state, the

model update mechanism should meet at least the following

two requirements: 1) service must be up, and running all the

time and 2) states must be preserved during model updates.

Solution. In LogLens, to update a broadcast variable (BV) at

runtime, we modify Spark internals with minimum possible

changes. Our solution is capable of rebroadcasting the im-

mutable BVs at runtime without job termination. BVs is a

serializable data object that is a virtual data block containing

a reference to the actual disk block where the variable resides.

When a BV is used in a Spark program, it is shipped to

each individual worker. During execution, whenever a worker

requests the value of a BV using getValue() method, Spark

first looks into the local data-block-cache of the worker for the

variable. If there is a cache miss, it sends a pull request to the

driver (where the variable is initially stored) to get the value

over the network. Once this variable is received, it is stored

on the local-disk-block-cache of that worker. From now and

so on, this cached value of the variable will be used whenever

a getValue() method is called.

To rebroadcast a BV which already resides in the local-

disk-block-cache of individual workers, LogLens invalidates

all locally cached values. Thus, whenever getValue() method

is called for that BV, a pull request is made to the driver. At

the driver, when a pull request is received rather than handing

over the old value, the driver sends the updated value. The

worker then receives the updated value and stores it in the

local cache. From now and so on, the newly fetched local

copy of the BV will be used.

Whenever a new model is issued from the model manager, it

is read from the model storage and enrolled into a queue. The

scheduler then waits for the current job to finish. LogLens’s

dynamic model update implementation communicates with the

block manager of each worker as well as the driver. It also

tracks all BV identifiers to maintain the same ID for the

updated BV which is otherwise incremented at each update.

This allows workers to retrieve the original BV after cache

invalidation. Furthermore, LogLens’s implements a thread-safe

queuing mechanism to avoid any race conditions due to the

extreme parallelization of the Spark jobs.

Spark data processing is a queue-based execution of the

data received in every micro-batch. In LogLens, model update

operation runs between these micro-batches in a serialized

lock process. The model data is loaded into memory, and

an in-memory copy operation loads the data to the BV. The

execution proceeds as normal and whenever the broadcast

value is required, workers fetch a fresh copy from the master.

The only blocking operation is the in-memory copy operation,
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and hence the overhead is directly dependent on the size of

the model. In practice, we find that this overhead is negligible

and it does not incur any slow-down on LogLens.

B. Implementing Stateful Algorithms Efficiently

Expedited Anomaly Detection. LogLens focuses on the real-

time anomaly detection, thus it is essential to report anomalies

as soon as they occur. At the same time to allow for scalable

and fast execution, LogLens uses data-parallel algorithms to

distribute the processing workload of incoming logs across

worker nodes. Data partitioning logic is only constrained

by grouping together logs which have an inherent causal

dependency on each other (i.e., same model, source, etc.) –

this allows LogLens to optimize performance and to avoid

performance bottlenecks as much as possible.

In a stateful anomaly detection, each log is independent of

the other, thus if a log comes, then anomalies can be reported

to the user. However, several real-world issues are potentially

problematic especially in the case of stateful anomalies, which

depend on the previous states. Two of these issues are:

1) What if a transaction fails and no log comes at all from a

source or for a particular key or pattern of the model? Es-

sentially, the saved state is already “anomalous”, but cannot

be reported since we have no concrete log as evidence. In

this case, the anomaly would never be reported.

2) Similarly if logs of certain automata are coming very

infrequently (several hours apart). This could be because

of overload in the target system. In such a scenario,

the anomaly may not be reported immediately for any

countermeasures to be taken.

Traditional timeout based approaches cannot be used as they

use system time, which can be very different from “log time”.

The log timestamps may come faster or slower than the actual

time progress within the LogLens system. Hence only the log

rate of embedded timestamps within the logs can be used to

predict timestamps in the absence of logs. Furthermore, the

key based mapping of states only allows similar keys to access

or modify the state. Even if somehow LogLens receives an

event that informs the program logic to flush the unnecessary

states, there is currently no way to access the states without

their keys.

Solution. To allow for expedited real-time anomaly detection,

LogLens uses an external heartbeat controller. This controller

generates a heartbeat message for every log source and period-

ically sends it to the anomaly detectors if the corresponding log

agent is still active. The heartbeat message is embedded with a

timestamp based on the last log observed and the rate of logs

from that source. Hence in the absence of logs, the heartbeat

message provides the current time of the target systems and

allows LogLens to proceed with the anomaly detection.

Efficient State Management. To enable efficient memory

management of the open states, LogLens extends the Spark

API (v1.6.1) to expose the reference of the state in a partition

to the program logic. Within the program logic, the state-map

can be accessed by calling the getParentStateMap() method on

the state object. This method returns the reference to the state-

map object where all the states of that partition are stored.

For anomaly detection, this state-map is enumerated to find

the states that are open and expired with respect to the current

log time. Although LogLens does not have the key to an open

state, it can still access that state and reports anomalies which

would otherwise go entirely undetected. However, because of

event-driven nature of the Spark’s stream processing, LogLens
still needs a trigger on all partitions to handle the infrequent

log arrival scenario.

Solution. As a remedy, LogLens also leverages the external

heartbeat controller and a custom partitioner. LogLens peri-

odically receives heartbeat messages from this controller to

trigger the expired state detection procedure. This external

message is sent to the same data channel (where logs arrive)

with a specific tag to indicate that it is a heartbeat message. If

such a message is observed in the program logic, the custom

partitioner kicks in and broadcasts the same heartbeat message

to all partitions. Whenever a heartbeat message is received,

an anomaly detection algorithm iterates over its states to

detect anomalies and clean up expired states. This procedure

is performed at all the partitions on every worker since the

heartbeat message is duplicated and broadcast to each partition

on the data channel.

VI. EXPERIMENTAL RESULTS

The goal of this section is to show experimental results to

evaluate the functionality and effectiveness of LogLens.

Dataset. We use six different datasets covering various data-

center operations for evaluation as shown in Table III. In the

table, we have proprietary dataset D1 of trace log of a data

center (Figure 2 shows sample logs), a synthetic dataset D2,

storage server based dataset D3, OpenStack based dataset D4

for infrastructure as a service deployment, PCAP based dataset

D5, and proprietary D6 dataset covering network operations.

We simulate these datasets as streams in our LogLens system.

Dataset Type
Total logs

Training Testing
D1 Trace log 16,000 16,000
D2 Synthetic 18,000 18,000
D3 Storage Server 792,176 NA
D4 OpenStack [33] 400,000 NA
D5 PCAP [34] 246,500 NA
D6 Network 1,000,000 NA

TABLE III: Evaluation Dataset.

Experimental setup. We perform our tests on a Spark cluster

with Spark Streaming. Our cluster has one master and eight

worker nodes. We use Spark version 1.6.1 with Kafka version

0.9.0.1. For replaying log data, we have developed an agent,

which emulates the log streaming behavior.
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A. Log Parser

Fast Timestamp Identification. LogLens has 89 predefined

timestamp formats in the knowledge-base. From our experi-

ments using datasets in Table III, we find that by combining

both caching and filtering, LogLens can detect timestamps up

to 22x faster than the linear scan-based solution – 19.4x is

contributed by caching, and the rest is contributed by filtering.

Fast Log Parsing. We compare LogLens against

Logstash [16], a popular open-source log parsing tool,

to show its efficiency. For these experiments, we use D3, D4,

D5, and D6 datasets which use the same set of logs in both

training and testing phases for sanity checking – a correct

parser does not produce any anomalies for these datasets.

Using LogMine [25] algorithm, first, we generate a set of

GROK patterns from the training logs; next, we parse testing

logs using these patterns; and we expect that every testing

log matches a GROK pattern as testing logs are same as the

training logs. Table IV shows that LogLens runs up to 41x

times faster than Logstash (v5.3.0), and handles large number

of patterns. Both LogLens and Logstash parse all training

logs and produce same parsing results. For the D4 and D6

datasets, Logstash did not generate any output even running

for more than 48 hours, and eventually we stopped it. The

main reason is as follows: D4 and D6 datasets produce 3234

and 2012 patterns, respectively and Logstash is not suitable

for handling such large pattern-sets.

Dataset Total Patterns
Running Time

LogLens Logstash Improvement
D3 301 109 sec 4550 sec 4074.31%
D4 3234 72 sec NA NA
D5 243 34 sec 588 sec 1629.41%
D6 2012 170 sec NA NA

TABLE IV: Results:LogLens vs. Logstash.

B. Log Sequence Anomaly Detector

The effectiveness of LogLens in easing human log analysis

burden requires detecting anomaly accurately. We also need

to verify that heartbeat controller helps to report anomalies

in real-time, and model controller instantly reflects system

behavior changes after a model update operation. Since log

sequence anomaly detector uses the output from the log parser,

consequentially our evaluation also demonstrates log parser’s

efficacy in building advanced log analytics applications.

Accuracy. We use D1 and D2 to evaluate the accuracy of

the log sequence anomaly detector because we have ground

truth form them. Figure 4 shows that D1 has originally 21

anomalous sequences, and our detector identifies all of them;

D2 has originally 13 anomalous sequences, and our detector

identifies all of them (red bar). Thus, for both datasets, we get

100% recall.

Heartbeat Controller. In LogLens, heartbeat (HB) controller

controls open states and helps to report missing end state
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Fig. 4: Log sequence anomaly detector results accuracy.

anomaly immediately. With HB controller, we expect to re-

port more anomalies as soon as they occur. Figure 5 shows

performance result of our HB controller. For a certain time

period, we run our anomaly detector on D1 and D2. If we

do not use HB controller, we detect 20 anomalies for D1 and

10 anomalies for D2. However, when with HB controller, we

detect 21 anomalies for D1 and 13 anomalies for D2, and all

of these extra anomalies are related to the missing end states.

These results demonstrate that HB controller is effective in

immediately reporting anomalies.
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Fig. 5: Anomaly detection with and without heartbeats

Model Controller. LogLens provides a key feature like the

model update as a service. It can add, update, or delete

models without restarting the running service. The goal of this

experiment is to show that the number of anomaly changes

after the model update in order to verify model controller’s

functionality. Now, we run two set of experiments. First, we

build models using training logs of D1 and D2. D1’s model

has two automata, while D2 has three automata. Using these

models, we detect 21 anomalies for D1, and 13 anomalies for

D2. Next, we modify both models by deleting an automaton

from them, update models through the model controller with-

out service interruption, and rerun testing. Table V shows that

deleting an automaton reduces the number of anomalies from

21 to 13 for D1, and 13 to 9 for D2. This behavior matches

with our intuition as the second set of experiments will

produce fewer anomalies because they have fewer automata

rules. Therefore, these two set of experiments validate the

functionality of the model update operation.

VII. REAL-WORLD CASE STUDIES

A. Analyzing Custom Application Logs

In this case-study, users want to analyze logs from a custom

application. These logs record SQL queries issued in the
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Dataset
Total

Automata
Anomaly

Count

Total
Automata

(after delete)

Anomaly
Count

(after delete)
D1 2 21 1 13
D2 3 13 2 9

TABLE V: Anomaly detection using model updates.

system to get various statistics used by other applications.

Table VI shows a set of sample logs. These logs are extremely

complex, and it took one week for the users to manually

generate patterns to parse all logs in order to understand log

characteristics. In contrast, LogLens generated 367 patterns in

50 seconds, which reduces humans effort by 12096x and aids

them to instantly focus on the log analysis tasks.

(0):GetFormControl():2[25 21:39:21] SQL SELECT TABLE: tblFormControl WHERE: tblFormControl.oFCID=’6a602aaa-9afd-4e2c-95e9-ee900dde4b50’

(0): GetObjects():2[25 21:39:21] SQL SELECT TABLE: tblContent WHERE: oPID=’ad1aa290-01ae-4edd-989c-1cee2ba63707’
AND ((((((oID IN (SELECT oID FROM tblFormData WHERE oFORMINSTID=tblContent.oID AND oFCID=’6a602aaa-9afd-4e2c-95e9-ee900dde4b50’
AND ((tblFormData.tValue IS NOT NULL AND tblFormData.tValue ¿ ’1799-01-01T00:00:00.000’ AND tblFormData.tValue ¡ ’2200-01-01T00:00:00.000’
)))))AND (((nType!=15 OR oID IN (SELECT oFORMINSTID FROM tblFormInstance WHERE tblFormInstance.oFORMID=
’3ebee358-2087-43d4-908b-df9ed04e74cc’)) AND (nType!=14 OR tblContent.oID=’3ebee358-2087-43d4-908b-df9ed04e74cc’))) AND ((oID IN
(SELECT oID FROM tblFormData WHERE oFORMINSTID=tblContent.oID AND oFCID=’7e68b547-0869-4a56-a664-26b32d0b5804’ AND
((tblFormData.tValue¡=’2017-10-26T03:59:59.000’ OR tblFormData.tValue IS NULL))))) AND ( (oID IN (SELECT oID
FROM tblFormData WHERE oFORMINSTID=tblContent.oID AND oFCID=’e28c6d82-532d-4618-a0a8-d62a15e00731’ AND
(tblFormData.sValue=N’dadf4506-2995-42c4-8616-cb43786fa382’)))) AND ((oID IN (SELECT oID FROM tblFormData WHERE oFORMINSTID=tblContent.oID
AND oFCID=’2a004b8d-16ef-4973-8ec8-be7db392e436’ AND ((tblFormData.sValue¡¿N’Y’ OR tblFormData.sValue IS NULL)))))))) AND (nType!=15 OR oID IN
(SELECT oFORMINSTID FROM tblFormInstance WHERE oFORMID=’3ebee358-2087-43d4-908b-df9ed04e74cc’)) AND 1=1 AND (nType=15)) AND(oID IN
(SELECT oID FROM tblPerm WHERE (oGrantID=’dadf4506-2995-42c4-8616-cb43786fa382’ OR oGrantID=’[Authenticated]’ OR oGrantID=’[Anonymous]’
OR oGrantID IN (SELECT oParent FROM tblMembership WHERE oChild=’dadf4506-2995-42c4-8616-cb43786fa382’))
AND fRead=1) ) AND (nSubType!=2 AND nSubType!=1 AND nSubType!=4 AND nSubType!=5) AND (nType!=15 OR nVersion!=0)

(0): GetObjects():2[25 21:39:21] SQL SELECT TABLE: tblFormData WHERE: oFORMINSTID = ’418f38ce-a35e-47db-8e1c-88fc7eb09de3’ AND oFCID
IN (’fe53e626-13ae-4206-8bc7-178cbc69b866’, ’6a602aaa-9afd-4e2c-95e9-ee900dde4b50’, ’1bfb5785-4f29-488b-8d09-c42faef48fee’,
’611e6c07-c8ba-44c5-b745-485e9faddcb4’, ’3d8dfd3d-2c62-4c19-8cb5-a3bec8bf729b’, ’7e68b547-0869-4a56-a664-26b32d0b5804’)

TABLE VI: Custom application logs sample

B. Discovering Security Attacks

In this case-study, we report spoofing attacks [35] dis-

covered by the log sequence anomaly detector of LogLens
from a set of Signaling System No. 7 (SS7) logs [36]. This

dataset contains 2.7 million SS7 logs spanning three hours

from 2016/05/09 10:00:00 to 2016/05/09 13:00:00. For the

model learning, users take the first two hours of SS7 logs as

training data. With this learned model, they discover anomalies

in the remaining one hour of SS7 logs.

Fig. 6: LogLens detects anomalies from SS7 security log data:

four clusters of anomalies highlighted by red circles cover logs

that indicate spoofing attacks.

As shown in Figure 6, the anomalies form multiple clusters

including in total 994 anomalies. In each cluster, its anomalies

are temporally close to each other. In practice, such anomaly

clusters usually serve as indicators for the significant system

events. By manually investigating the logs in the clusters, users

find that the abnormal logs are traces left by potential SS7

spoofing attacks.

Figure 7 shows a few examples of abnormal logs. In

particular, the abnormal logs are marked as red, while the

Fig. 7: SS7 attacks revealed by LogLens anomalies

logs of other colors are normal ones. As shown in these

examples, normal logs follow SS7 protocol with a sequen-

tial pattern “InvokePurgeMs” → “InvokeSendAuthentication-
Info” → “InvokeUpdateLocation”. Unlike normal logs, the

traces left by spoofing attacks form a different sequence

“InvokePurgeMs” → “InvokeSendAuthenticationInfo” with-

out ending “InvokeUpdateLocation” because attackers only

want to guess credentials of the legitimate users without

finishing up the full protocol. Anomaly clusters are formed

because attackers launched intensive spoofing attacks, which

result in a large number of log sequence violations in a short

period of time.

It is very difficult even for the domain experts to manually

check all 1 million SS7 logs for investigating security attacks.

In this empirical study, it took them 2 days to perform such

investigation. In contrast, LogLens reported abnormal logs that

were related to the spoofing attacks in 5 minutes without any

domain knowledge, thus it saved 576x of man-hours.

VIII. CONCLUSION AND LESSON LEARNED

LogLens provides a blueprint for implementing a real-

time log analysis system by leveraging unsupervised machine

learning based techniques. It can detect anomalies with no

(or minimal) human involvement and can easily adapt to

the system behavior change. It deploys log analysis as a

service by enhancing the Spark [17] big data processing

framework. LogLens classifies anomaly detection algorithms

into stateless and stateful categories and provides a reference

implementation for both categories. The stateless log parser

runs up to 41x faster than the state-of-the-art Logstash [16]

tool and the log analytic applications save up to 12096x man-

hours in diagnosing real-world operational problems. Finally,

we share one of the key lessons learned from our interaction

with the real users: when designing an automated system
instead of no human involvement, we need to focus on the
minimization of human involvement. One of the main problems

of learning models from a training dataset (i.e., data-driven

approach) is that in many cases this dataset may not cover all

the possible use-cases that users want to monitor. Therefore,

we have to provide options to users for incorporating their

domain knowledge during model building as well as allow

them to edit automatically generated models to improve the

accuracy of the anomaly detection results.
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