
iProbe: A Lightweight User-Level Dynamic

Instrumentation Tool

Nipun Arora, Hui Zhang, Junghwan Rhee, Kenji Yoshihira, Guofei Jiang

NEC Laboratories America

{nipun,huizhang,rhee,kenji,gfj}@nec-labs.com

Abstract—We introduce a new hybrid instrumentation tool
for dynamic application instrumentation called iProbe

1, which is
flexible and has low overhead. iProbe takes a novel 2-stage design,
and offloads much of the dynamic instrumentation complexity to
an offline compilation stage. It leverages standard compiler flags
to introduce “place-holders” for hooks in the program executable.
Then it utilizes an efficient user-space “HotPatching” mechanism
which modifies the functions to be traced and enables execution
of instrumented code in a safe and secure manner. In its eval-
uation on a micro-benchmark and SPEC CPU2006 benchmark
applications, the iProbe prototype achieved the instrumentation
overhead an order of magnitude lower than existing state-of-the-
art dynamic instrumentation tools like SystemTap and DynInst.

Index Terms—monitoring, tracing, hotpatching, production
systems, low-overhead

I. INTRODUCTION

Over the years researchers have proposed many tools to

assist in application performance analytics [1], [2], [3], [4],

[5], [6], [7], [8]. While these techniques provide flexibility, and

deep granularity in instrumenting applications, they often trade

in considerable complexity in system design, implementation

and overhead to profile the application. For example, binary

instrumentation tools like Intel’s PIN Instrumentation tool [1],

DynInst [8] and GNU debugger [2] allow complete blackbox

analysis and instrumentation but incur a heavy overhead. Pro-

duction system tracers such as DTrace[3] and SystemTap[4]

are optimized for inserting hooks in kernel function/system

calls, and can monitor run-time application behavior over

long time periods. However, they have limited instrumentation

capabilities for user-space instrumentation, and incur a high

overhead due to frequent kernel context-switches and complex

trampoline mechanisms. Hence, software developers often

utilize program print statements, write their own loggers, or

use tools like log4j [9] or log4c [10] to track the execution

of their applications. However, while they have low-overhead

they are inflexible and can only be turned on/off at compile-

time or before starting the execution, thereby greatly reducing

their effectiveness.

The main idea in iProbe design is decoupling the process of

run-time instrumentation into offline and online stages, which

avoids several complexities faced by current state-of-the-art

mechanisms [3], [4], [8], [1] such as instruction overwriting,

complex trampoline mechanisms, and code segment memory

allocation, kernel context switches etc. Most existing dynamic

1Tool Demo: http://www.youtube.com/watch?v=8fO9fvQZ9kQ, iProbe is a
proprietary software and is not available publicly

instrumentation mechanisms rely on a trampoline based de-

sign, and generally have to make several jumps to get to the

instrumentation function as they not only do instrumentation

but also simulate the instructions that have been overwritten.

iProbe on the other hand, can be imagined as a framework

which provides a seamless transition from a non-instrumented

binary to an instrumented binary. We use a hybrid 2-step mech-

anism which offloads dynamic instrumentation complexities

to an offline development stage, thereby giving us a simpler

design with significantly better performance. Our first phase

ColdPatch prepares “place-holders” in the binary which can

be turned on and off using dynamic instrumentation in our

HotPatch phase. iProbe has instrumentation overhead com-

parable to print/debug statements, while still providing users

the flexibility to choose targets in the execution stage. iProbe

showed an order of magnitude performance improvement

in comparison to SystemTap[6] and DynInst[8] in terms of

tracing overhead and scalability. Looking forward, we deem

it a new paradigm in packaging of applications, wherein

developers can insert instrumentation ready “place-holders”

using our ColdPatch; an iProbe-ready application can then

be deployed in the production environment and can easily be

monitored when required.

II. DESIGN

A. ColdPatching Phase

ColdPatching is a pre-processing phase which generates

the place-holders for hooks to be replaced with the calls for

instrumentation. The following are the key steps in coldpatch:

Firstly, iProbe uses compiler techniques to insert instrumen-

tation calls at the beginning and end of each function call (see

section IVand II-C for further details)2

Secondly, iProbe parses the binary and replaces all instru-

mentation calls generated using the compiler with a NOP

instruction. This generates instructions in the binary which

does no-operation, hence has a negligible overhead, and acts

as an empty space for iProbe to be overwritten at run-time.

Thirdly, iProbe parses the binary and gathers meta-data

regarding all the target instrumentation points into a probe-list.

The probe-list is securely transferred to the run-time interface

of iProbe and used to probe the instrumentation points.

2Apart from compiler techniques, placeholders can be added in a variety
of ways including binary rewriting or user defined macros etc.



Fig. 1. HotPatching Work-flow.

The parameters of the instrumentation functions added by

the compiler, are decided on the basis of the design of the com-

piler pass. Developers can define their own compiler passes(or

choose from pre-defined passes) to customize the addition of

placeholders. One of the advantages of this approach is that

since target instrumentation is passed using a meta-data list,

iProbe can strip away all debug and symbolic information in

the binary making it more secure and light-weight, as debug

information is not required at run-time.

B. HotPatching Phase

Once the application binary has been statically patched (i.e.,

ColdPatched), instrumentation can be applied at run-time.

Compared to existing trampoline approaches, iProbe does

not overwrite any instructions in the original program, or

allocate additional memory when patching the binaries, and

still ensures reliability. In order to have a low overhead, and

minimal intrusion of the binary, iProbe avoids most of the

complexities involved in HotPatching such as allocation of

extra memory in the code segment or scanning code segments

to find instrumentation targets in an offline stage. The process

of HotPatching is as follows:

Firstly, iProbe loads the relevant instrumentation functions

in a shared library to the code-segment of the target process.

This along with allocation of NOPs in the ColdPatching phase

allows iProbe to avoid allocation of memory for instrumenta-

tion in the code segment.

The probe-list generated in the ColdPatching phase is then

given to our HotPatch program as a list of target probe

points in the executable (iProbe can handle stripped binaries

due to previous knowledge of the target instructions). As

shown in Figure 1, our HotPatcher attaches itself to the target

process and issues an interrupt (time T1). It then performs

a safety check (see Section II-D), and subsequently replaces

the NOP instructions in each target function, with a call to

the instrumentation function. This is a key step which enables

iProbe to avoid the complexity of traditional trampoline [11],

[12] by not overwriting any logical instructions (non-NOP) in

the original code. Since the place-holders (NOP instructions)

are already available, iProbe can seamlessly patch these appli-

cations without changing the size or the run-time footprint of

the process. Once the calls have been added iProbe releases

the interrupt and let normal execution proceed (time T2). To

disable tracing we reverse the process and convert probe points

back to NOPs (time T3 and T4).

C. State Transition Flow

Figure 2 demonstrates an example of the operational flow

of iProbe when instrumenting the entry and exit of function

func_foo. The left most figure represents the instructions of

a native binary. As an example, it shows three instructions (i.e.,

push, pop, inc) in the prolog and one instruction (i.e., pop) in

the epilog of the function func_foo. The next figure shows

the layout of this binary when it is compiled with the instru-

mentation option. As shown in the figure, two function calls,

foo_begin and foo_end are automatically inserted by the

compiler at the start and end of the function respectively.

iProbe exploits these two newly introduced instructions as

the place-holders for HotPatching. The ColdPatching process

overwrites two call instructions with NOPs. At run-time, the in-

strumentation of func_foo is initiated by HotPatching those

instructions with the call instructions to the instrumentation

functions: begin_instrument and end_instrument.

D. Safety Checks for iProbe

In this section we briefly mention some of the safety and

reliability issues iProbe deals with:

Firstly, when interrupting and overwriting instructions,

iProbe ensures that the program counters of all threads be-

longing to the target applications do not point to the instruc-

tion being replaced. This is done so that we do not have

an inconsistent state such that the instruction being read is

partly a call instruction and partly NOP (which results in an

illegal instruction crash). This check is similar to those from

traditional Ptrace [7] driven debuggers [13], [11], [14] and

uses GETREGS() to inspect registers.

Secondly, iProbe enforces use of cdecl [15] (as compared

to std calls) type calls for instrumentation to ensure stack

consistency when passing parameters. These calls ensure that

the caller function performs stack cleanup operations. This is

important, as iProbe needs to ensure that parameters passed

to the instrumentation functions are safely removed after the

function is executed.

Thirdly, iProbe also deals with ASLR[16] (address space

layout randomization), a security measure which randomizes

the load address of executables and shared libraries(ASLR can

randomize offsets of probe points in each execution). To deal

with this problem, iProbe assumes privileged access to the tar-

get system and finds the load addresses of each binary/shared

library using the process-id mapping information. It then uses

this information to find the base offsets of the binaries and

generates correct instruction addresses.

III. TRAMPOLINE VS. HYBRID APPROACH

One of the key reasons for better performance of iProbe in

run-time is avoiding multiple jumps enforced in the trampoline

mechanism. As shown in Figure 3, to insert a hook for the



Fig. 2. Native Binary, the State Transition of ColdPatching and HotPatching.

Fig. 3. Traditional Trampoline based Dynamic Instrumentation Mechanisms.

function foo(), dynamic instrumentation tools overwrite tar-

get probe point instructions with a jump to a small trampoline

function (jmp()). Note that the overwritten code by jmp

should be executed somewhere to ensure the correctness of

the original program. The trampoline function executes the

overwritten instructions (foo fix) before executing the ac-

tual code to be inserted. Then this trampoline function in turn

makes the call to the instrumentation function (foo_instr).

Each call instruction can potentially lead to branch mispredic-

tions in the code cache and cause high overhead. Additionally

tools like DTrace, and SystemTap [3], [4] have the logger in

the kernel space, and cause a context switch in the trampoline

using interrupt mechanisms. In comparison iProbe has a NOP

instruction which can be easily overwritten without resulting in

any illegal instructions, and since overwriting is not a problem

trampoline function is not required. This makes the instrumen-

tation process simple resulting in only a single call instruction

at all times. Additionally, iProbe avoids overheads because

of memory allocation required in trampoline approaches, and

complex guarantees of safety and reliability, which iProbe

offloads to an offline stage because of its hybrid design.

IV. IMPLEMENTATION

The design of iProbe is generic, and has been tested on

gcc/g++ generated native binary executables in linux.

ColdPatch: We implemented this by compiling binaries us-

ing the -finstrument-functions[17] flag3. This com-

piler option places function calls to instrumentation functions

(_cyg_profile_func_enter/_exit ) after the entry

and before the exit of every function. Subsequently, our Cold-

Patcher parses the binary to read through all the target binaries,

and search and replace the instruction offsets containing the

instrumentation calls with NOP instructions (instruction ‘90’).

Symbolic and debug information is read from the target

binary using commonly available objdmp[18] tools; This

information combined with target instruction offsets are used

to generate the probe list with the following information:

<Instr Offset, Entry\Exit Point, Meta-Data>

The meta-data here is the file, function name, line no. etc.

HotPatching: In the run-time phase, we first use the li-

brary interposition technique, LD_PRELOAD, to preload the

instrumentation functions in the form of a shared library

to the execution environment. The HotPatcher then uses a

command line interface which interacts with the user and

provides the user an option to input the target process and the

probe list. Next, iProbe collects the base addresses of each

shared library and the binary connected to the target process

from /proc/pid/maps. The load address and offsets from

the probe-list are then used to generate an index of all

possible probing points. iProbe then prompts the user for a

list of target functions and interrupts the process (we provide

the user the meta-data information list of target functions

and their respective file information.) We then use ptrace

functionality to patch the target instructions with calls to our

instrumentation functions, and release the process to execute as

normal. The instrumentation from each function is registered

and logged by an efficient lock-free shared memory logger.

V. EVALUATION

A. What is the overhead of an iProbe enabled(ColdPatch)

application without instrumentation?

We tested iProbe on 8 SPEC [19] benchmark applications

shown in Figure 4. The first column shows the execution

of a normal binary compiled without any instrumentation or

3Note that this can be done simply by appending this flag to the list of
compiler flags (e.g., CFLAG, CCFLAG, CXXFLAGS) and most of cases it
works without interfering with user code.



Fig. 4. Overhead of iProbe “ColdPatch Stage” on SPEC CPU 2006 Bench-
marks.

Fig. 5. Overhead and Scalability Comparison of iProbe HotPatching vs.
SystemTap vs. DynInst using a Micro-benchmark.

debug flags. The next column shows the execution time of

the corresponding binary compiled using the instrumentation

flags4. Lastly, we show the overhead of a ColdPatched iProbe

binary with NOP instead of the call instruction. The overhead

for a ColdPatched binary was found to be less than five percent

for all applications executed, and 0-2 percent for four of the

benchmarks. The overhead here is basically because of the

NOP instructions that are placed in the binary as place-holders

for the HotPatching. In most production applications (e.g.,

apache, mysql) we have observed the overhead to be negligible

(less than one percent), with no observable effect in terms of

throughput. Additionally, increase in the size of the binary is

directly proportional to the number of targets5, and is usually

not a concern in most production servers.

B. How does iProbe compare to existing tools in terms of

overhead and scalability?

We compared the scalability and hotpatching overhead of

iProbe with UTrace (user-space tracing in SystemTap) [6],

and DynInst [8] on a x86 64, dual-core machine with Ubuntu

12.10 kernel using a micro-benchmark6. The micro-benchmark

4calls inserted by the instrumentation flag do not execute any function and
can be safely executed even without cold-patching

5In the example in this paper, two call instructions for every function
6For most large scale applications the selection of the functions to be probed

and their frequency will have a heavy impact on the overhead. This micro-
benchmark focuses only on the overhead generated by each of the frameworks,
and since it’s repeatable it can be easily used for a scalability analysis.

is a dummy application with multiple calls to an empty

function foo. The instrumentation tools of each framework

simply increases a global counter for each event triggered

(entry and exit of foo). To test the scalability of our the

tools, we have increased the number of calls made to foo

exponentially (increase by multiples of 10).

We found that iProbe scales very well and is able to keep

the overhead to less than five times for millions of events

(108) generated in less than a second (normal execution) for

entry as well as exit of the function. While iProbe executed

in 1.5 seconds, the overhead observed in SystemTap is around

20 minutes for completion of a sub-second execution, while

DynInst takes about 25 seconds. As explained in Section III,

tools such as DynInst use a trampoline mechanism, hence have

a minimum of 2 call instructions for each instrumentation.

Additionally SystemTap uses a context switch to switch to the

kernel space over and above the traditional trampoline mech-

anism, resulting in the higher overhead, and less scalability

observed in our results.

VI. CONCLUSION

Flexibility and performance have been two conflicting goals

for the design of dynamic instrumentation tools. iProbe offers

a solution to this problem through a two-stage process that

offloads much of the complexity involved in run-time instru-

mentation to an offline stage. We presented in the evaluation

that iProbe is significantly faster than existing state-of-the-art

tools, and scales well in large application software.

REFERENCES

[1] C.-K. e. a. Luk, “Pin: building customized program analysis tools with
dynamic instrumentation,” in PLDI ’05, 2005.

[2] R. Stallman, R. Pesch, and S. Shebs, “Debugging with gdb: The gnu
source-level debugger for gdb version 5.1. 1,” 2002.

[3] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic instru-
mentation of production systems,” in USENIX’04, 2004.

[4] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston, and B. Chen,
“Locating system problems using dynamic instrumentation,” in Proceed-

ings of the 2005 Ottawa Linux Symposium (OLS), 2005.
[5] M. Desnoyers and M. Dagenais, “The lttng tracer: A low impact

performance and behavior monitor for gnu/linux,” in OLS (Ottawa Linux

Symposium), 2006, pp. 209–224.
[6] R. McGrath, “Utrace,” Linux Foundation Collaboration Summit, 2009.
[7] “Ptrace:linux process trace,” http://linux.die.net/man/2/ptrace.
[8] B. Buck and J. K. Hollingsworth, “An api for runtime code patching,”

Int. J. High Perform. Comput. Appl.

[9] S. Gupta, Logging in Java with the JDK 1.4 Logging API and Apache

log4j. Apress, 2003.
[10] “log4c: Logging for c library,” http://log4c.sourceforge.net.
[11] “Livepatch,” http://ukai.jp/Software/livepatch/.
[12] S. e. A. Bratus, “Katana: Towards patching as a runtime part of

the compiler-linker-loader toolchain,” International Journal of Secure

Software Engineering (IJSSE), vol. 1, no. 3, pp. 1–17, 2010.
[13] K. Yamato, T. Abe, and M. Corpration, “A runtime code modification

method for application programs,” in Proceedings of the Ottawa Linux

Symposium, 2009.
[14] “Pannus: A hot patching tool,” http://pannus.sourceforge.net/.
[15] “Calling conventions for different operating systems,” http://agner.org/

optimize/calling conventions.pdf.
[16] “Pax aslr documentation,” http://pax.grsecurity.net/docs/aslr.txt.
[17] “Gcc options for code generation,” http://gcc.gnu.org/onlinedocs/gcc-

4.4.6/gcc/Code-Gen-Options.html.
[18] “Object dump tool,” http://sourceware.org/binutils/docs/binutils/objdump.html.
[19] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH

Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.


