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ABSTRACT
The emergence of Software-Defined Networking(SDN) has
led to a paradigm shift in network management. SDN has
the capability to provide clear and easy management of com-
plex operational challenges in large scale networks. However,
most of the existing work in SDN network management as-
sumes a full deployment of SDN enabled network switches.
Due to both practical and financial limitation real imple-
mentations are likely to transition through a partial deploy-
ment. In this paper, we describe our experience in the de-
sign of HybNET a framework for automated network man-
agement of a hybrid network infrastructure (both SDN and
legacy network infrastructure). We discuss some of the chal-
lenges we encountered, and provide a best-effort solution in
providing compatibility between legacy and SDN switches
while retaining some of the advantages and flexibility of
SDN enabled switches. We have tested our tool on small
hybrid network infrastructure, and applied it to manage the
OpenStack Neutron interface a well known open-source IaaS
provider.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design, Management
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Network architecture, Cloud, Virtualization, SDN

1. INTRODUCTION
Software-defined networking (SDN) enables efficient and ex-
pressive network management in enterprises and data cen-
ters by (1) separating the high-level network policy specifi-
cation (e.g., for isolation, security, failure recovery) from its
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low-level implementation on network devices (e.g., forward-
ing rules), and (2) allowing fine-grained visibility and almost
instant configuration updates of the network. Network op-
erators realize SDN by deploying switches whose forwarding
table is programmable remotely from a logically centralized
controller using a specialized protocol (e.g., OpenFlow [22]).

The majority of OpenFlow-enabled networks deployed in
practice, either in academic test-beds [20, 16, 14, 23] or part
of large data centers [19, 17], assume a fully evolved SDN
ecosystem, where all legacy network configuration has mi-
grated to OpenFlow. In reality, however, the transition from
the legacy network to an OpenFlow-enabled network does
not happen overnight. Due to both practical and financial
limitations the network is likely to transition through a hy-
brid deployment with both legacy and OpenFlow switches
and with the same high-level policy implemented through
different low-level mechanisms. For example, ensuring com-
munication isolation among a set of hosts is likely imple-
mented with VLANs on legacy switches and fine-grained for-
warding rules on OpenFlow switches. The challenge, identi-
fied by others as well [22, 21, 15] is to ensure seamless net-
work operation, even when the configuration mechanisms of
the network or not compatible.

We present HybNET, a network management framework
for hybrid OpenFlow-legacy networks. HybNET provides
the network operator centralized control and visualization
across the whole network, similar to how a controller in a
pure OpenFlow network would. HybNET hides the disso-
nance between the SDN and legacy network configurations
by transparently translating the legacy network configura-
tion into OpenFlow configuration and providing a common
configuration mechanism for both SDN and legacy switch
configuration. In essence, our framework views the connec-
tions between OpenFlow switches as virtual links composed
by multiple links between physical switches. Thus, Open-
Flow switches deal with the task of intelligently applying
the configuration, while legacy switches are limited to pro-
viding forwarding.

The contribution of this paper is two-fold. Firstly, we pro-
vide a basic design of a hybrid network manager which al-
lows for seamless connectivity in the network via a common
centralized configuration interface. Secondly, we provide a
mechanism for network virtualization functionality for a set
of hosts. This functionality is provided using VLANs in
traditional networks and using fine-grained forwarding rules



inserted by the OpenFlow controller. HybNET provides a
proxy service that translates the VLAN configuration into
OpenFlow rules on the fly by .

We have implemented the automation management proto-
type on top of the popular open source cloud computing
platform, OpenStack [8]. We adopt Neutron [3], the net-
work service of OpenStack, for host-side network virtual-
ization and construct the hybrid physical infrastructure by
using legacy switches as well as SDN switches (supporting
OpenFlow). The cloud infrastructure was hosted a mini-
network infrastructure, with both SDN and legacy switches.
HybNET was successfully able to manage, add, delete and
modify virtual tenant networks for users and network op-
erators, and provided network isolation for all tenants. We
believe that HybNET is the first of it’s kind in providing a
practical management mechanism for hybrid networks, and
can be easily used by network operators without any special
hardware requirements.

The rest of the paper is organized as follows: Section 2 in-
troduces the design of HybNET. Section 3 describes imple-
mentation of our prototype. Section 4 shows the evaluation
in terms of infrastructure performance. Section 5 discusses
the related work. Finally, in section 6, we summarize the
work.

2. DESIGN
2.1 Architecture Overview
As shown in Figure 1, our design consists primarily of three
components: physical infrastructure, path finder, and con-
troller (described in section 2.2). The physical infrastruc-
ture describes the basic mechanism that HybNET connects
to the network infrastructure, and the path-finder provides
a basic algorithms to find viable paths in the network for
connectivity. The main component, and work-flow is a part
of the controller which manages and orchestrates the entire
management framework.

Each network operator request is dealt as a transaction and
is logically atomic in nature. HybNET checks if the rules
have been updated successfully, and reports any errors while
maintaining state consistency at all times. Additionally,
HybNET supplies a common API for network operators to
use to process transactions. For each transaction, config-
urations are prepared and sent to legacy switches or SDN
controllers through remote communication mechanism, such
as RPC and REST calls, and a persistent state view is kept
in the mapping database.

2.2 Components
Physical infrastructure/topology: A Hybrid Network
is composed of both legacy and SDN switches, which can
be fabricated into various topologies based on requirements
[15, 21]. However, to provide a generic framework, HybNET
does not assume any underlying topology. At the same time,
we assume that we require complete knowledge of the phys-
ical topology, which can be provided either by the network
administrator or by an automatic network discovery service
(e.g.Link Layer Discovery Protocol (LLDP)[2]).

Additionally, similar to OpenFlow controllers HybNET re-
quires management access to control every switch in the

Figure 1: Hybrid-controller architecture overview

network. Access can be implemented either in-band (man-
agement traffic share the network with data traffic) or out-
band (management traffic is designated to separate phys-
ical network). All network requests are communicated to
the HybNET controller, which computes the network oper-
ations and segregates the updates that need to be performed
in the legacy part of the network and the OpenFlow part of
the network. The resulting changes are then disseminated
to the OpenFlow controller (which then manages all SDN
switches), and the relevant legacy switches. HybNET talks
to OpenFlow controller via REST calls and subsequently the
controller manages OpenFlow switches via OpenFlow pro-
tocols. While the management of the OpenFlow controller
is standardized, legacy switches have several network man-
agement mechanisms, such as SNMP[9] and NETCONF[18].
For the purposes of this paper, we have demonstrated our
proof of concept tool by using the NETCONF protocol (we
believe that other mechanisms can also be adapted to such
a management framework). Provided aforementioned com-
munication protocols, HybNET will be able to control every
switch in hybrid network.

Path finder: As stated earlier the primary goal of any net-
work management solution is to provide end-to-end connec-
tivity. To this end, HybNET offers path finding algorithms
to calculate suitable paths to connect end-hosts whose logi-
cal topologies belong to the same network. Figure 2 shows
an example of a cloud infrastructure which wants to provi-
sion two VMs, one is on Host 1 and the other is on Host
4 on the same logical network and ensure connectivity be-
tween them. Viable paths between them can go through
both legacy and SDN switches, hence existing tools cannot
be directly applied. The path-finder can find a suitable path
along the red line as shown in Figure 2 by using an appropri-
ate algorithm. Once calculated this path is used to identify
the relevant switches that need to be configured, and this
information is forwarded to the HybNET controller.

Within enterprise network or data-center networks, network
topologies can be much more complex. Thus, intelligent
path finding algorithms [12, 13, 24] are required to manage
aspects such as efficiency, isolation, load balancing, QoS, etc.
However, for the purposes of this paper, our implementation



Figure 2: Topology graph generation

Figure 3: Hybrid-controller working flow

on adopts a simple shortest path algorithm.

Controller: The controller is the main component of Hyb-
NET and manages most of the logic. The work-flow (see
Figure 3) of the controller can be divided into two phases:
an initialization phase, and a main loop which manages ev-
erything at run-time. In the initialization stage, controller
retrieves physical topology from the network and generates
a topological graph. Additionally, it registers and sets up
RPC callback functions so that they can receive and process
network operator requests.

The main loop function of controller, manages all run-time
network requests. For example, when the user requires to
provision a new VM, a logical network is created from the
host side. Then an “adding” request with the requisite in-
formation is sent to the controller by the network operator
with help of HybNET supplied APIs. After receiving this re-
quest, controller will parse input parameters to check tenant
id, user id, logical network information (i.e., VLAN config-
urations), and VM information (i.e., host machines). Then
path finding algorithm is applied to detect available paths.
If the path does not exist, an unreachable error will occur.
We mark this transaction as “failed” and send back an error
message.

If paths are generated successfully, HybNET prepares con-
figuration files for legacy switches and OpenFlow switches
along the path. Our design provides general APIs to al-
low developers or switch vendors to design drivers to talk to

legacy switches or applications, while control of OpenFlow
switches is designated to standard OpenFlow controllers. If
the return status of each switch after configuration shows
SUCCESS, the desired connection is established, otherwise
a configuration error will occur. We mark this transaction
“failed” and all switches are rolled back to previous configu-
ration state.

Another important aspect is that any changes made to the
physical infrastructure need to be reported to HybNET. If
physical topology changes, the database is updated corre-
spondingly, and if required the changes are made updating
rules on corresponding switches.

2.3 Virtual links
Network virtualization is the process of combining hardware
and software network functionality into a single software-
based administrative entity called a virtual network. One of
the key features offered by network virtualization is the log-
ical separation of systems physically attached to the same
local network into different virtual networks. Grouping hosts
with a common set of requirements regardless of their phys-
ical location can greatly simplify network design. This en-
ables network operators or infrastructure providers the ca-
pability to manage network resources being used by different
tenants/applications in isolation.

In legacy network switches, a common way to ensure net-
work isolation and provide virtualization is the use of VLAN
tags. VLAN tags can create multiple layer 3 networks by
providing layer 2 isolation on the same physical network.
When VLAN tagged packets are to simply pass through an
intermediate switch via two pass-through ports, only the two
ports are a member of the VLAN and are configured to allow
tagged packets. The sliceable switch [10] application allows
for network isolation in OpenFlow networks, by introducing
another level of redirection using the concept of slice. Slice is
a software enforced concept, which segregates end-user mac
addresses or switch ports in different slices. Before a new
flow is created, packet-in frames are sent to the controller.
If the packet-in frames belong to the registered slice on that
port, the corresponding flow is added to the relevant slice
(else it is rejected). A sliceable switch can be used to cre-
ate a large scale services (theoretically unlimited) within a
single domain, unlike VLAN (limited to 4096 tags). It can
also create a service that spans multiple domains without
considering mesh connectivity between devices. Given these
two mainstream isolation methods for traditional network
and SDN, the critical problem faced by hybrid network is
how to maintain compatibility between them.

In this paper, we propose the idea of ”virtualization in virtu-
alization” to allow for network isolation, the first virtualiza-
tion here refers to SDN slices, and the next to virtualization
via VLAN’s. As discussed in section 2.2 HybNET has a
global view of the physical topology, but offers a SDN-view
network topology to the SDN controller as shown in Figure
4. The SDN-view network topology includes the OpenFlow
switches connected by ”virtual links”, which are composed
of a succession of legacy switches. This method leaves the
network intelligence to the SDN switches, while limiting the
primary purpose of legacy switches to packet transport. Iso-
lation can still be applied in virtual links by using VLAN



Figure 4: Convert a global view network topology
to SDN view network topology by ”Virtualization in
virtualization” mechanism

tags, and mapping them to slice-id’s.

One of the key limitations in mapping VLAN tags to slice
ID’s is that VLAN only supports a maximum of 4096 VLAN-
ID’s, while sliceable switch application does not have any
such limitation. Our current solution is simplistic in the
sense that we have a one-to-one mapping between VLAN
ID and slice ID, this provides a clear abstraction for net-
work virtualization. This solution can work for any hybrid
topology, but it is constrained by the range of tags allowed
by VLAN and cannot support more than 4096 VLAN’s. An-
other simplistic mechanism we have tested is to provide net-
work isolation at the OpenFlow layer using sliceable switch
and provide no isolation guarantees in the“virtual links”(i.e.
VLAN tags are not used in legacy switches, and packets are
simply forwarded without any layer 2 isolation). This so-
lution assumes, that either all top-of-the-rack switches are
OpenFlow switches, or that each end-host machine has an
OpenVSwitch[6] (software OpenFlow switch). Hence, each
end-user(VM or end-host) can only be accessed via an Open-
Flow enabled switch, which can implement network slices
using sliceable switch application thus ensuring isolation.
While this solution provides end-user isolation, it does not
provide any isolation in the legacy switches, and requires
certain restrictions in the physical topology.

2.4 General API
As mentioned earlier, HybNET supplies a common API for
network operators to use to process transactions and config-
ure hybrid network infrastructure across boundaries.

For example, say a cloud operator wants to create a new Vir-
tual Tenant Network for company A, and assign some VM’s
to it. The network operator would first need to add a Hyb-
NET slice by calling the function add slice(slice id). A suc-
cessful execution of this function will return a new HybNET
slice id which corresponds an OpenFlow slice and a VLAN
tag. Further the operator can add a VM to the given slice
by calling the function add vm to slice(tenant info, ins info,
net list). As specified, this function requires the information
about the owner, VM information (vm id, mac address, host
ip etc.), and the slice id generated in the previous call: a suc-

cessful execution of this function results in HybNET adding
the list of VM’s to the specified slice. The following are some
of the common API functions provided by HybNET.

add slice(slice id):
Create a slice in sliceable switch database

@slice id: unique id for a slice

delete slice(slice id):
Delete a slice from sliceable switch database

@slice id: existing slice id to be deleted

add vm to slice(tenant info, ins info, net list):
Add a VM to an existing slice and create the network connectivity

@Tenant info: provides the owner information of this request.

@Ins info: specifies VM information, such as id, mac, host ip etc.

@Net list: provides logical topology information including VLAN-ID and

Slice-ID.

delete vm to slice(ins info):
Remove a VM from an existing slice and delete the network connectivity

@Ins info: specifies VM information.

3. IMPLEMENTATION
In this section, we describe the implementation of HybNET,
and it’s integration with a well known cloud service provider
to test out our system. HybNET has primarily been built
in python with the majority of the implementation focused
on the controller: this includes the logic to maintain physi-
cal and logical topologies in back-end databases, path find-
ing algorithms, and driver interfaces used to communicate
with legacy switches and OpenFlow controllers. We also
use ruby which is mainly used to manage NETCONF[18]
enabled legacy switch configuration.

The prototype of HybNET includes a command line inter-
face which allows administrators to issue network requests.
Currently, we have integrated HybNET with OpenStack (Griz-
zly) an open-source cloud computing platform. Specifically,
HybNET works in tandem with Neutron the network ser-
vice manager of OpenStack to provide hybrid network man-
agement capability. Further, in our proof-of-concept imple-
mentation each end-host is configured with an OpenvSwitch
(OVS) which allows for node level virtualization. The OVS
is a software switch based on the OpenFlow protocol, and
is connected to HybNET via Neutron. OVS provides node
level virtualization by leveraging TAP1 devices and KVM.
All VMs running on the same compute host attach their
TAP devices to an OVS integration bridge. Integration
bridge isolates attached virtual ports by their logical net-
work tags assigned by network operator and establishes cor-
responding flow rules for packet forwarding. With the help
of OVS, multiple logical networks are able to share one or
multiple physical interfaces in an isolated manner. Network
requests forwarded to Neutron are intercepted by HybNET
as input from the network administrator. Subsequently,
HybNET computes and forwards rule updates to Trema[11]
OpenFlow controller, and NETCONF based RPC scripts.

1further explanation of the exact design can be found at
http://docs.openstack.org/trunk/openstack-network/
admin/content/under_the_hood_openvswitch.html



4. EVALUATION & CASE STUDY
In this section, we describe a real world implementation of
HybNET in managing a cloud infrastructure. Our test-bed
consists of compute nodes running on 4-core 3.4 GHz servers
and 8 GB memory. Each server contains a number of virtual
machines connected to an OVS. The physical network infras-
tructure consists of Juniper EX2200 series switches(legacy
switches) and NEC Programmable-Flow PF5240 switches,
which support OpenFlow protocol. We have tested Hyb-
NET by integrating it with OpenStack and tested it’s feasi-
bility on a mini-network. Additionally, to test performance
of HybNET, we simulate a large network environment and
check on our frameworks efficiency.

Since HybNET performs no run-time rule update, we be-
lieve that it will have no impact in network latency and
throughput. The only job performed by HybNET is when
configuring the network infrastructure for managing cloud
admin, and tenant requests. Hence, we focus on measur-
ing the performance of HybNET only in terms of perform-
ing network operations. We adopt Infrastructure Response
Time (IRT)[1] (latency between placing and completing a
transaction on the network infrastructure) as a key metric to
evaluate infrastructure performance. The remainder of this
section, discusses the automation and flexibility of HybNET
as well as the latency of network administration tasks.

In order to measure overhead, we first connect a real mini-
network and beef up the database by simulating input of
a much larger fat-tree data-center topology(see Figure 5).
The advantage of this scheme is that we have a large mock
network which increases the complexity substantially, while
a real mini-network which can be used to test out the perfor-
mance and feasibility of HybNET. Our fat-tree is built with
k-port switches supporting k

3/4 hosts, where k = 16 to sim-
ulate 320 switches and 1,000+ hosts. The simulated data
structures (switches, hosts and interfaces) are stored in the
physical infrastructure database, used by hybrid-controller
to generate mock physical topology graph at initialization
stage. The core switches are OpenFlow switches while the
aggregation and edge switches are legacy switches2. We sim-
ulate such a network topology to measure how long hybrid-
controller will take to establish connectivity paths in a real
world network environment.

To showcase the feasibility of HybNET we profile VM net-
work provisioning in OpenStack, which we found to be the
most time consuming task, and which requires connectiv-
ity establishment by our controller. IRT of provisioning a
VM can be broken down into the following paths: image
template fetching, resource preparation (e.g., virtual net-
work provision, storage provision), connectivity establish-
ment (carried out by hybrid-controller) and VM spawning
(VM creation on the host). We configure the network re-
quest such that the connectivity path (shortest path from
our path-finder) is generated along the real physical switches
comprising of both legacy and OpenFlow switches. Figure
6 shows the latency breakdown of our profiling results when
provisioning a VM on top of OpenStack infrastructure. The
OpenStack’s compute API (Nova) handles the provision re-
quest from an end user within less than 1 seconds, including

2please note HybNET is topology agnostic hence it does not
matter if we use any other topology

Figure 5: Example of Fat-Tree topology with k = 4

Figure 6: Latency breakdown for provisioning a VM
on top of OpenStack

identification and scheduling tasks. The total VM provi-
sion time is about 13.5 seconds (we didn’t count the VM
booting time), among which 3.5 seconds are for resource
preparation and 10 seconds are for VM spawning. Hybrid-
controller consumes less than 6 seconds in total. This result
is the worst case measurement by choosing the longest pos-
sible path in the network (hence it requires configuration
of the maximum number of switches). The algorithm takes
around 300 milliseconds for calculating shortest path, con-
sisting of 4 legacy switches and 1 OpenFlow switch. Even
though legacy switch configuration is parallelized, we found
that the configuration of legacy switches was the biggest
bottleneck as it takes around 5 seconds to finish setting up
new configurations. Unfortunately, this is a limitation of the
hardware and it’s network configuration capabilities. While
not relevant directly, it should also be noted that in the case
of OpenStack since the time consumed by hybrid-controller
is much smaller than VM spawning, it’s latency is hidden
from the end-user.

Thus hybrid-controller supplies automation management with-
out obviously influencing original infrastructure provision
performance. We believe that HybNET is highly beneficial
as it provides complete automation, as well as network vir-
tualization with best-effort performance based on the given
physical infrastructure.

5. RELATED WORK
SDN controller frameworks such as Trema[11], NOX[5], and
academic projects such as OpenDaylight[7] provide useful



mechanisms for network administrators to write controllers
and management interfaces to simply the network manage-
ment process. Trema is an open source framework written in
Ruby and C, which provides a rich library to the developer
to design a OpenFlow controller. It contains a rich library
of existing applications, and a large open-source community
contributing updates. NOX is one of the early SDN con-
trollers, developed by Nicira[4] and has since been the basis
for many research projects and early exploration in the SDN
space. OpenDaylight is a community-led, open, industry-
supported framework, for accelerating adoption of SDN in
the industry and academia. However, all of these existing
mechanisms focus on a full deployment of SDN infrastruc-
ture, and cannot be directly applied to a hybird network.

Recently, Google described B4 [17] it’s mechanism to transi-
tion from it’s pure legacy network infrastructure to an SDN
controlled fabric for managing connections between it’s data-
centers. While an interesting insight into the challenges
faced in managing hybrid infrastructures, B4 focuses on net-
work transition specifically for Google’s network infrastruc-
ture and cannot be generalized. Fabric[15] and Panopti-
con[21] discuss various topologies that can be used in de-
signing a hybrid network, which can provide some of the
high level network functionalities and advantages provided
by SDN (such as isolation, access control and load balanc-
ing etc.). On the other hand, HybNET is topology agnos-
tic and focuses on providing a framework for management
of a hybrid network. In a way, approaches such as Fabric
and Panopticon[15, 21] are complimentary to our goals and
showcase some interesting designs which can be leveraged
by HybNET to provide richer network functionalities.

6. CONCLUSION
In this paper, we provide HybNET a network management
framework for providing automation in configuring hybrid
networks composed of both legacy and OpenFlow switches.
Additionally, our system provides compatibility between VLAN
and sliceable switch application to provide seamless network
virtualization across boundaries. Our tool aims to retain
some of the advantages of SDN networks while making net-
work automation feasible across different network infrastruc-
tures. We showcase our system by integrating it with Open-
Stack a well known open-source cloud service provider, and
have tested this tool on a real hybrid network infrastructure
to show its feasibility and performance.
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