
DeltaPath: Precise and Scalable Calling Context Encoding

Qiang Zeng†, Junghwan Rhee‡, Hui Zhang‡, Nipun Arora‡, Guofei Jiang‡, Peng Liu†

†Penn State University, ‡NEC Laboratories America

ABSTRACT
Calling context provides important information for a large range of
applications, such as event logging, profiling, debugging, anomaly
detection, and performance optimization. While some techniques
have been proposed to track calling context efficiently, they lack
a reliable and precise decoding capability; or they work only un-
der restricted conditions, that is, small programs without object-
oriented programming or dynamic component loading. These short-
comings have limited the application of calling context tracking in
practice. We propose an encoding technique without those limi-
tations: it provides precise and reliable decoding, supports large-
sized programs, both procedural and objected-oriented ones, and
can cope with dynamic class/library loading. The technique thus
enables calling context tracking in a wide variety of scenarios. The
evaluation on SPECjvm shows that its efficiency is comparable
with that of the state-of-the-art approach while our technique pro-
vides precise decoding and demonstrates scalability and flexibility.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging-Monitors,
Testing tools

General Terms
Performance, Measurement, Reliability

Keywords
Calling context encoding, object-oriented programming

1. INTRODUCTION
A calling context is the sequence of active function/method in-

vocations that lead to a program location. It provides critical in-
formation about dynamic program behavior. The usage has been
demonstrated in a wide range of applications, such as debugging [9,

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
CGO ’14, February 15 – 19 2014, Orlando, FL, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2670-4/14/02 ...$15.00.

11, 15, 18, 19, 20, 22, 23, 27, 28, 31, 32, 39, 37], event logging
and error reporting [45, 25, 35], testing [12, 16, 24, 38], anomaly
detection [21, 26, 44], performance optimization [29], and profil-
ing [10, 33, 36, 34, 30, 43]. For example, system call event log-
ging is critical for the analysis and diagnosis of the program ex-
ecution in many production systems. Simply logging the system
call events fails to record how program components interact when
a system call is issued, while recording calling contexts would be
very informative. Take profiling as another example; context sen-
sitive profiling is powerful as it associates data such as execution
frequencies, overhead and object life time with calling contexts,
and thus provides precise information for program understanding
and optimization [8].

It is straightforward to obtain calling contexts through stack walk-
ing, which, however, is expensive [6, 3]. A few encoding tech-
niques, which represent a calling context using one or more in-
tegers, have been proposed to track calling contexts continuously
with low overhead. Bond and McKinley [14] proposed a technique,
probabilistic calling context (PCC), that computes a probabilisti-
cally unique integer ID, essentially a hash value, for each calling
context. Although PCC encoding is efficient and compact, it does
not provide decoding, which is essential to applications that require
inspecting and understanding contexts, such as debugging, error re-
porting and event logging [41].

In order to enable the decoding capability, Breadcrumbs was
built on PCC [13]. It collects additional dynamic information to
assist decoding. Specifically, it records encoding values at rela-
tively cold call sites. Depending on the threshold defining the hot
code, the technique either incurs large overhead or sacrifices de-
coding accuracy and reliability. Besides, the decoding has to be
offline because it involves expensive computation (their evaluation
used the limit of 5 seconds) for recovering one context.

Computing calling contexts with low overhead and precise and
reliable decoding capability is challenging. Recent progress was
made by Sumner et al. [41], who proposed precise calling con-
text encoding (PCCE) evolved from path profiling [10]. This tech-
nique iterates every possible calling context through static analysis
and represents each using a unique encoding during runtime, so the
context can be recovered precisely from the encoding.

However, as pointed out in previous research [13], PCCE would
not work in the presence of virtual methods and dynamic class
loading. Besides, handling large-scale software is a challenge to
this technique, as it lacks a scalable solution to the encoding for
a large number of calling contexts. More discussion about PCCE
is in Section 2. The challenges limit the application of the encod-
ing technique in a large range of scenarios, as a lot of software
nowadays is written in object-oriented languages with dynamically
loaded components and a large number of calling contexts .

109

This paper presents DeltaPath, an efficient calling context en-
coding technique with a precise decoding capability and the sup-
port for both procedural and object-oriented programs. Similar to
PCCE, the technique leverages the Ball-Larus path profiling algo-
rithm [10]. It obtains a unique encoding for each context at run-
time by summing up the addition values of the call sites form-
ing the context. Addition values are computed using our encod-
ing algorithm based on static analysis of the target program, then
an addition value and the addition operation are assigned to each
call site through instrumentation. Unlike PCCE, which assumes
small or medium-scale software without object-oriented program-
ming or dynamically loaded components, DeltaPath does not have
those limitations. It supports both procedural and object-oriented
programming, allows dynamic class loading, and works with large-
scale software.

DeltaPath resolves the limitations based on the following in-
sights and ideas. The addition value of a call site is related to
the number of calling contexts ending at it, while a big program
usually contains a very large number of calling contexts, such that
addition values may go beyond, i.e., overflow, the encoding inte-
ger. To avoid integer overflows, it is very inefficient to represent
and operate on addition values using some class (e.g., BigInte-
ger in Java). The insight is that a long calling context can be di-
vided into several shorter pieces, each can be encoded using an inte-
ger. The DeltaPath encoding algorithm automatically finds a small
number of functions acting as such dividers for the whole program,
avoiding integer overflows systematically with low overhead. In
addition, a virtual function call can be dispatched to many possible
functions, while PCCE computes an addition value for each target.
It is infeasible to insert a bulky switch statement at each virtual
function call site and execute it to choose the addition value, for
virtual function call sites are ubiquitous and frequently invoked in
object-oriented (OO) programs. Our encoding algorithm computes
a single addition value for one call site to minimize the code cache
pressure and execution slowdown. Moreover, dynamically loaded
classes introduce calling contexts that are not considered during
static analysis. A call path tracking technique is designed to detect
unexpected calling contexts and keep the encoding correct.

We implemented DeltaPath and performed experiments with a
variety of Java programs. Our evaluation results show that its per-
formance is comparable with that of PCC [14], which is a highly
efficient and the state of the art calling context encoding technique
capable of working in the presence of object-oriented programming
and dynamic class loading. Compared to PCC, DeltaPath intro-
duces precise and reliable decoding.

We made the following contributions.
• We propose a new precise calling context encoding technique

that supports both procedural and OO programs.

• Encoding space pressure is addressed systematically. It thus
allows the encoding technique to be applied to large-scale
software.

• Dynamic class loading is handled properly using the call path
tracking technique.

• We implemented DeltaPath and evaluated it on a variety of
Java programs. The efficiency of DeltaPath is comparable
with that of PCC while it provides precise and reliable de-
coding.

The rest of this paper is organized as follows. Section 2 presents
the encoding background. Section 3 presents DeltaPath. Section 4
discusses several practical issues. The implementation details and
evaluation results are presented in Section 5 and Section 6, respec-

A

B C

D

F

E

G

1

1 1

2

3

4

8

+1

+2

+2
+7

+4

context
A
AB
AC
ABD
ACD
ABDE
ACDE
ABD'E
ACD'E
ABDF
ACDF
ACF
...

ID
0
0
0
0
1
0
1
2
3
0
1
2

Figure 1: Example for PCCE encoding. Edge annotations are
addition values; an addition value “+c” means “ID+=c” is exe-
cuted before the invocation and “ID-=c” is executed after; the
superscript on D (D′) disambiguates two call sites in D both in-
voking E.

tively. The related work is discussed in Section 7, and the future
work in Section 8. The paper is concluded in Section 9.

2. BACKGROUND
Ball and Larus proposed an efficient algorithm (referred to as the

BL algorithm) to encode intra-procedural control flow paths [10].
Each of the paths leading from the entry of a function to the end of
it obtains a unique encoding. The algorithm has become canonical
in control flow encoding and path profiling.

PCCE [41, 42] leverages the BL algorithm and adapts it to en-
coding calling contexts, which are essentially inter-procedural paths
in a call graph. PCCE encodes the calling context using a small
number of integer identifiers (IDs), ideally one. It instruments func-
tion calls with additions to an integer ID such that the calling con-
text ending at any program point can be uniquely represented by
the ID along with the program counter of the point.

The algorithm calculating addition values consists of two steps
of analysis of the target program’s call graph. First, it computes
the number of calling-contexts (NC) of each node in the call graph
by summing the NC of each of the nodes’ predecessors (the NC of
main is 1). Second, with respect to each node, the addition value
for the first edge is 0, and for each of the rest edges the addition
value is the sum of the NCs of the predecessors appeared in the
previously processed edges.

Consider the call graph in Figure 1. The annotation of each node
indicates its NC. D’s NC= 2, for example, is the sum of the NCs of
B and C, denoting there are two possible contexts when D is invoked.
The number along each edge is the addition value. Some edges do
not have such numbers, meaning the addition values are 0. CG’s
addition value is calculated after EG and FG, thus it is the sum (7)
of the NC of E (4) and that of F (3).

Take the context ACFG as an example for encoding, the ID in-
creases along CF and FG, respectively, so the result is 6. The table
in Figure 1 shows the encodings of other calling contexts. Some
contexts have the same ID values, for example, AB and AC. It is fine
because an encoding is represented by both the ID and the ending
node.

Given an encoding, we can precisely recover the calling context
from bottom to top. Consider the ID 6 obtained at node G, for ex-
ample, the edge whose addition value is the greatest but not greater
than the ID value is taken, that is, FG. We then jump to node F

meanwhile decrease the ID by the addition value, 4, for FG. The

110

main

… … …

p1 p2 pm

… … …

n

… …

][1pAV

][][][mm pAVpICCnICC

][2pAV][mpAV

][][][11 iii pAVpICCpAV
for i=2...m

Figure 2: Intuition of our algorithm.

decoding continues with F and ID value 2, from which we can re-
cover edges CF and AC the same way.

If cycles exist in the call graph, which implies there are recur-
sions in the program, a recursive call path is divided into acyclic
sub-paths, each of which is encoded separately, such that a stack
of IDs is used to represent a call path of recursions. We refer the
readers to [42] for more details. Since recursions are handled in
the same way by our technique, we omit its discussion and assume
acyclic call graphs in the rest of the paper.

As a first step towards calling context encoding that allows pre-
cise decoding, PCCE works under restrictive conditions: programs
in procedural languages without dynamically loaded components
or high encoding space pressure. This has limited the application
of PCCE in a variety of scenarios. Our goal is to deliver a calling
context encoding technique without those limitations.

3. DELTAPATH ENCODING
This section presents DeltaPath. Section 3.1 covers encoding in

the presence of virtual function calls, while Section 3.2 considers
encoding space pressure along with object-oriented programming
and describes a systematic solution.

3.1 Encoding for Object-oriented Programs
With object-oriented programming a function call can be dis-

patched to multiple targets. Such polymorphism complicates en-
coding, as a call site may have conflicted addition values due to the
multiple dispatch targets. For example, assume edges D′E and DF

in Figure 1 are due to the same virtual function call site. According
to the PCCE algorithm, the addition values for edge D′E and DF are
2 and 0, respectively.

It is straightforward and tempting to choose the addition value
based on the dynamic dispatch result using a switch statement,
which, however, will significantly increase the code to be inserted
and slow down the program execution, as virtual function call sites
are massive and frequently invoked in OO programs.

In order to minimize the encoding overhead, our goal is to cal-
culate a single addition value for each call site. However, addition
values generated by the PCCE algorithm do not work for the pur-
pose. For example, if 2 is used as the single addition value in the
case above, the calling contexts ABDF and ACF will both be encoded
to 2, which violates the principle of a unique encoding for each dif-
ferent context. The computation of the addition values thus requires
a new encoding algorithm.

The upper bound of the encoding space representing the calling
contexts ending at a node is called its inflated calling-context count
(ICC). That is, the calling contexts of a node n are encoded us-

p

…

n1

…

n2 nk

...
]}[],...,[max{ 1 knCAVnCAVa

apICCnCAVnCAV k][][][1

...

Step 1:

Step 2:

Figure 3: Intuition of encoding with dynamic dispatch. A vir-
tual function call in p can be dispatched to multiple meth-
ods n1, n2, ... , nk. The candidate addition value of a node
ni, denoted by CAV [ni], is initially 0, and it is updated each
time the addition value of an edge leading to ni is calculated.
We process the call in two steps. First, the addition value
a = max{CAV [n1], . . . ,CAV [nk]} is obtained; second, CAV [ni] is
updated as ICC[p] + a, for i = 1, . . . ,k. The updated CAV [ni] is
then used to calculate the addition value for the next incoming
edge of ni.

ing the integers in [0, ICC[n]). The basic idea of our algorithm is
to ensure the invariant that for any given node, its encoding space
is divided into disjoint sub-ranges, with each sub-range encoding
calling contexts along one incoming edge of the node. Figure 2 il-
lustrates the intuition behind the idea. Assume for a given node n,
it has totally m incoming edges. The addition value along pin is de-
noted by AV [pi].1 The invariant is kept if the following conditions
are satisfied: (1) AV [p1] ≥ 0 and AV [pi] ≥ ICC[pi−1] +AV [pi−1]
for i = 2, . . . ,m, and (2) ICC[main] = 1 and ICC[n] ≥ ICC[pm] +
AV [pm] if n 6= main.

It can be proved using induction. The encoding ID is initial-
ized as 0 at the main function, and ICC[main] = 1; the encod-
ing ID is in [0, ICC[main]), thus the invariant is satisfied at main.
Assume all the predecessors of n satisfy the invariant. The call-
ing contexts ending at n are encoded into m disjoint sub-ranges:
[AV [p1], ICC[p1] +AV [p1]) encodes the contexts along edge p1n,
and generally, [AV [pi], ICC[pi]+AV [pi]), for i = 2, . . . ,m, encodes
the contexts along pin, where AV [pi]≥ ICC[pi−1]+AV [pi−1], that
is, AV [pi]≥ the upper bound of the sub-range encoding the contexts
along pi−1n. Plus, according to condition (2), all the sub-ranges fall
in the range [0, ICC[n]).

Figure 3 illustrates how ICCs and addition values are computed
satisfying the conditions above. The virtual function call inside
p can be dispatched to n1,n2, . . . ,nk. Each node ni is associated
with a variable CAV [ni], denoting the candidate addition value that
should be considered when computing the addition value for the
next incoming edge of ni. CAV [ni] is initially 0 and keeps up-
dating along with the calculation of the addition value. In this
case, after the addition value for the call site is assigned as a =
max{CAV [n1], . . . ,CAV [nk]}, the candidate addition values are up-
dated as CAV [ni] = ICC[p]+ a. Later the updated CAV [ni] is used
to calculate the addition value for the next incoming edge of ni. By
computing the addition value of a call site as the maximum value
among the candidate addition values of the nodes that the call site
can be dispatched to and updating the CAVs using the chosen addi-
tion value, condition (1) described above is satisfied. After the ad-
dition value for the last incoming edge of a node n is calculated and

1An addition value is associated with a call site, so more precisely
it should be denoted as AV [pin]; we use AV [pi] instead for the sake
of conciseness.

111

Algorithm 1 Encoding with dynamic dispatch
1: function ENCODING(N,E)
2: ICC[main]← 1
3: for n ∈ N do
4: CAV [n]← 0
5: for n ∈ N in topological order do
6: for e = 〈p,n, l〉 of the incoming edges of n do
7: cs = 〈p, l〉
8: if cs ∈ processedSites then
9: continue

10: processedSites← processedSites∪{cs}
11: AV [cs]←CalculateIncrement(cs)
12: if n 6= main then
13: ICC[n]←CAV [n]
14: function CALCULATEINCREMENT(cs = 〈p, l〉)
15: a← 0
16: for each e = 〈p,n, l〉 dispatched from cs do
17: if CAV [n]> a then
18: a←CAV [n]
19: for each e = 〈p,n, l〉 dispatched from cs do
20: CAV [n]← ICC[p]+a
21: return a

CAV [n] is updated for the last time, ICC[n] is assigned as CAV [n],
satisfying condition (2).

Algorithm 1 shows the encoding algorithm. The input of the
algorithm is the call graph of the target program, CG = 〈N,E〉,
where N is a set of nodes with each representing a function and
E a set of directed edges. Each call edge e ∈ E is a triple 〈n,m, l〉
where n,m ∈ N, are the caller and callee, respectively, and 〈n, l〉
is a call site potentially invoking m. In Java, for example, l is the
byte code index of the call site in n. A call edge in our algorithm
is modeled as a triple instead of a caller and callee pair in order to
distinguish multiple call sites in the caller that may invoke the same
callee. In the encoding examples below we omit l and simply use
nm to denote an edge for the sake of simplicity, though.

In the beginning, ICC[main] is set to 1 (Line 2), and the CAV of
each node is initialized to be 0 (Line 3–4). Then the nodes are vis-
ited in a topological order; a node is visited after all its predecessors
have been visited. For each non-main node n, ICC[n] is assigned
(Line 13) after all its incoming edges are processed (Line 6–11).
For each incoming edge of the node being visited, the algorithm
identifies its call site (Line 7), and determines whether it has al-
ready been processed by searching the call site in processedSites,
which stores all the call sites that have been processed; as multiple
edges can be due to one call site, this ensures that the algorithm pro-
cesses each call site only once. Function CALCULATEINCREMENT
calculates the addition value for the call site and then updates the
CAV of each of the nodes that the call site can be dispatched to.
Due to the topological traversal order, when node n is processed,
the ICC values of its predecessor nodes are already assigned, so the
update of CAV [n] can refer to ICC[p] without problems (Line 20).

Consider the example in Figure 4. ICC[A] is set to be 1 (Line 2),
and all the CAVs are initialized as 0 (Line 3–4). Upon the visit of
B, the addition value for AB is CAV [B] = 0 (Line 18), then CAV [B] =
ICC[A]+0= 1 (Line 20) and ICC[B] =CAV [B] = 1 (Line 13). Node
C is processed similarly. Then the topological traversal reaches D.
BD is first processed, so CAV [D] = 0 is used as the addition value.
Next, CAV [D] is updated as 1(= ICC[B] + 0), which is then used
as the addition value for the next incoming edge CD, and CAV [D] is
updated as 2(= ICC[C]+1) (Line 20) . As CD is the last incoming

A

B C

D

F
E

G

1

1 1

2

54

14

+1

+4

+2
+4

+9

context
A
AB
AC
ABD
ACD
ABDE
ACDE
ABD'E
ACD'E
ABDF
ACDF
ACF
...

ID
0
0
0
0
1
0
1
2
3
2
3
4

+2

+5

Figure 4: Example for encoding with dynamic dispatch. The
superscript on D (D′) disambiguates two call sites in D both in-
voking E. D′E and DF are due to a virtual function call in D, and
CF and CG are due to a virtual function call in C. Node annota-
tions are ICC values.

edge of D, ICC[D] is assigned as 2(=CAV [D]) (Line 13).
The traversal then visits node E. After DE is processed, CAV [E] =

ICC[D]+0 = 2 (Line 20) . Next, the last incoming edge of E, D′E, is
processed. Note that the two edges D′E and DF are due to the same
call site, and CAV [F] = 0. The addition value for this call site is
hence calculated as max{CAV [E],CAV [F]}= 2 (Lines 16–18). Then
CAV [E] and CAV [F] are updated as 4(= ICC[D]+2) (Lines 19–20).
After that, ICC[E] is updated as CAV [E] = 4 (Line 13). Other nodes
are similarly processed following the algorithm. In the end, each
call site in Figure 4 obtains a single addition value, while each call-
ing context can be encoded uniquely.

In order to accommodate virtual function calls, the algorithm in-
flates the number of calling contexts (NC) of a node and uses it
as the upper bound of its encoding space, which is thus termed as
the inflated calling-context count (ICC). For example, NC[F] = 3,
while ICC[F] = 5; the gap between the two enables a uniform ad-
dition value 2 for the virtual call site leading to edges D′E and DF.
It is interesting to note that when there is no virtual function in a
program, ICC[n] = NC[n] for any given node n, which is the case
in the PCCE encoding for procedural programs.

The decoding remains the same (Section 2), so it is omitted.

3.2 Encoding for Large-scale Object-oriented
Programs

In both PCCE and Algorithm 1, the addition value at a call site
reflects the number of calling contexts ending at the call site, while
the number of calling contexts grows exponentially with the size
of a call graph. Thus the computation of addition values during
static analysis can incur integer overflows. Moreover, runtime in-
teger overflows may also occur when computing the encoding ID
by summing up addition values.

The runtime integer overflows can be easily resolved despite
some cost: before each addition operation, the encoding judges
whether an integer overflow can occur; if so, the current ID value
is pushed onto a stack, and the ID is reset to 0 before the encod-
ing continues. The encoding result is then represented as a stack
of IDs along with the current ID value. The integer overflow prob-
lem during static analysis is more challenging. Implementation us-
ing some big integer classes, for example, Java library provides
the BigInteger class supporting representation of huge integers,
is straightforward but would be very inefficient, as addition values
are represented as objects and during runtime each addition opera-
tion becomes a function call. Our goal is to completely avoid the

112

runtime integer overflow and resolve the integer overflow during
static analysis without using big integer classes.

While PCCE achieves this goal by pruning edges during static
analysis to ensure that the resultant call graph can be encoded by
a single integer, the technique is not scalable for encoding large-
sized programs, as massive edges at the deep portion of the call
graph would be pruned and the pruned edges are handled at a rel-
atively high runtime cost the same way a runtime integer overflow
is processed as aforementioned. We aim at a scalable and efficient
solution to the integer overflow problem.

The observation is that so far all calling contexts begin at the
main function, such that the encoding space keeps growing when
encoding those calling contexts ending at the deep portion of a call
graph. So instead of encoding a calling context as a whole, we di-
vide it into pieces, each of which can be encoded using an integer
without overflows; it implies that each addition value can be repre-
sented by an integer, since the encoding value of each piece is the
sum of the addition values within the piece.

We thus design an advanced version of the encoding algorithm,
which chooses a set of anchor nodes dividing all long calling con-
texts in a program into shorter pieces. Each piece begins at an
anchor node and is encoded relative to it. During runtime the en-
coding maintains a stack. When the program invokes an anchor
node p, the current encoding ID value along with the anchor node’s
identifier is pushed onto the stack, then the ID is reset to 0 and the
encoding continues. When the invocation of p returns, the ID is
recovered with the popped ID value. In this way the previously
global encoding space pressure is distributed along anchor nodes,
and each calling context piece can be encoded separately and lo-
cally. The anchor nodes virtually act as barriers that keep the
encoding space pressure from flowing downstream along the call
graph.

There are two challenges to be resolved when designing the al-
gorithm. First, it needs to find the anchor nodes. Second, given a
call site, there exist multiple calling context pieces all reaching the
call site while starting from different anchor nodes; hence, multiple
addition values for the call site may be obtained due to the encoding
relative to different anchor nodes.

We revise the static analysis in Algorithm 1 to resolve the two
challenges, as shown in Algorithm 2. It automatically picks anchor
nodes. Initially only the main node is in the anchor node set An
(Line 2). Whenever an integer overflow occurs while processing an
edge 〈p,n, l〉, p is added into the set of anchor nodes An (Line 15)
and the static analysis is rerun (Line 16).

In order to cutting calling contexts correctly, function IDENTI-
FYTERRITORIES first walks the “territory” of each anchor node.
Specifically for each anchor it finds out the nodes and edges that
can be reached through a bounded depth-first search, which starts
the traversal from the anchor node and retreats at other anchor
nodes; those anchor nodes form the boundary of the territory. From
the nodes and edges in each territory we derive nanchors[n] and
eanchors[e], which represent the anchor nodes that can reach node
n and edge e, respectively.

The territories of anchor nodes overlap, which explains the rea-
son behind the second challenge. In order to resolve it, the candi-
date addition values (CAV) and the inflated calling-context counts
(ICC) of a node are extended to two-dimensional arrays with the
first index still representing the node and the second an anchor
node, taking into account of multiple anchor nodes that can reach
the node. For example, CAV [n][r] denotes the candidate addition
value that should be considered when processing the next incom-
ing edge e of n if and and only if r ∈ eanchors[e].

The addition value for a given call site is determined by the max-

Algorithm 2 Encoding resolving encoding space explosion.
1: function ENCODING(N,E)
2: An←{main}
3: again: Identi f yTerritories(N,E,An)
4: for n ∈ N do
5: for r ∈ nanchors[n] do
6: CAV [n][r]← 0
7: for n ∈ N in topological order do
8: for e = 〈p,n, l〉 of the incoming edges of n do
9: cs = 〈p, l〉

10: if cs ∈ processedSites then
11: continue
12: processedSites← processedSites∪{cs}
13: AV [cs]←CalculateIncrement(cs)
14: if AV [cs] =-1 then // Overflow detected.
15: An← An∪{p}
16: goto again // Restart the encoding.
17: if n /∈ An then
18: for r ∈ nanchors[n] do
19: ICC[n][r]←CAV [n][r]
20: else
21: ICC[n][n]← 1
22: function IDENTIFYTERRITORIES(N,E,An)
23: for r ∈ An do
24: 〈visitedN,visitedE〉 ← BoundedDFS(r)
25: for n ∈ visitedN do
26: nanchors[n]← nanchors[n]∪{r}
27: for e ∈ visitedE do
28: eanchors[e]← eanchors[e]∪{r}
29: function CALCULATEINCREMENT(cs = 〈p, l〉)
30: a← 0
31: for each e = 〈p,n, l〉 dispatched from cs do
32: Assume eanchors[e] = {r1, . . . ,rk}
33: a′← max{CAV [n][r1], . . . ,CAV [n][rk]}
34: if a′ > a then
35: a← a′

36: for each e = 〈p,n, l〉 dispatched from cs do
37: for r ∈ eanchors[e] do
38: CAV [n][r]← ICC[p][r]+a
39: if CAV [n][r] incurs an integer overflow then
40: return -1
41: return a

imum of the candidate addition values of all its possible dispatch
target nodes to address the dynamic dispatch (Line 31–35). All the
anchor nodes that can reach each of the possible dispatch edges are
taken into account, so that the territory conflict is resolved.

After a node’s incoming edges are processed (Line 8–16), the
ICC values are updated. For a non-anchor node n, the ICC rela-
tive to each anchor in nanchors[n] is updated (Lines 18–19), while
the ICC of each anchor node is set to 1 (Line 21), which is equiv-
alent with ICC[main] ← 1 in Algorithm 1. The encoding algo-
rithm is correct because the invariant described in Section 3.1 is
satisfied. Specifically, the encoded ID obtained at n is in the range
of [0, ICC[n][top]), where top is the top anchor node saved on the
stack. It is notable that the runtime overflow checks are not needed,
as the algorithm ensures that there is no integer overflow for ICC
values (Line 19), which are the upper bounds of the encoding spaces.

Figure 5 shows an example of encoding involving two anchor
nodes C and D. Consider the encoding of the calling context CFG.
Edge CF is first processed. Edges CF and CG are due to the same

113

C
D

F
E

G

+1

+2

+1

context
DE
D'E
DF
CF
DEG
D'EG
DFG
CFG
CG

ID
0
1
1
0
0
1
3
2
0

stack
d
d
d
c
d
d
d
c
c

ICC[D][D]=1

ICC[E][D]=2

ICC[C][C]=1

ICC[F][C]=1
ICC[F][D]=2

ICC[G][C]=3
ICC[G][D]=4

… … …

Figure 5: Example for encoding in large programs. C and D

are anchor nodes. The superscript on D (D′) disambiguates two
call sites in D both invoking E. D′E and DF are due to a virtual
function call in D, and CF and CG are due to a virtual function
call in C. The annotation of a node denotes the ICC values of the
node relative to anchor nodes; for example, ICC[E][D] = 2 means
the ICC of E relative to anchor D is 2. A stack is used to store the
anchor node identifiers and the ID values when invoking them.
The encoding of a call path CFG, for example, is represented by
c on the stack, where c contains anchor C’s identifier and the
encoding ID value when C is invoked, along with the encoding
ID value 2, which is the sum of addition values of CF and FG.

virtual call site. As CAV [F][C] and CAV [G][C] are initially both 0
(Line 4–6), the addition value for the call site is thus calculated
as max{CAV [F][C],CAV [G][C]} = 0 (Line 33). Then CAV [F][C] and
CAV [G][C] are updated as ICC[C][C]+a = 1 (Line 38). The addition
value for the virtual function call in D are calculated similarly. After
DE, D′E and DF are processed, now focus on node G. CG is already
processed and the related call site is included in processedSites
(Line 10–11) due to the dynamic dispatch at C. EG is processed next
with addition value 0. CAV [G][D] = ICC[E][D] + 0 = 2 (Line 38),
and CAV [G][C] is still 1, so max{CAV [G][D],CAV [G][C]}= 2 is used
as the addition value for FG (Line 33).

For decoding, we first recover the deepest piece of the calling
context according to the current ID and the anchor node on the stack
top. Then pop the anchor node and the ID to continue decoding the
next piece of the calling context. The process repeats until the stack
is empty. Given the ID 2 obtained at G and the anchor node C on
stack stop, we recover a call path CFG. Then anchor node C and the
saved ID are popped from the stack to continue decoding the next
piece of the calling context.

4. PRACTICAL ISSUES

4.1 Dynamic Class Loading
So far we assume a complete call graph for static analysis. How-

ever, in reality the dynamic characteristics of a program can render
this assumption invalid. Dynamic class loading, which is common
in Java for example, makes the generation of a complete call graph
ahead of runtime unresolvable.

As a result, relative to a call graph generated for static anal-
ysis, dynamically loaded classes introduce unexpected call paths
(UCPs). Figure 6 shows such an example, where node X and its in-
coming and outgoing edges are missing during static analysis stage
due to dynamic class loading. The context ABXE contains a UCP B

→ X→ E; its encoding ID value is 0. However, if we decode it, an
incorrect calling context ACE is obtained. This kind of UCPs is haz-
ardous as they lead to incorrect encoding and decoding. Consider
another context ABXD, which contains a UCP B→ X→ D, and BD

B C

D E

X

A

X missing node

missing edge

1

11

1 1

Figure 6: Incomplete call graph. BD and BX are due to the same
virtual function call, where X is from a dynamically loaded class
unexpected by static analysis.

and BX are due to the same virtual call site. Its encoding ID 0 can
be decoded to ABD. Although the decoded result does not contain
the dynamically loaded node X, it includes all the other nodes in the
right order. We thus consider the encoding correct and this kind of
UCPs benign.

In order to keep the encoding correct in the presence of dy-
namic class loading, we need to detect hazardous UCPs and re-
spond accordingly. Inspired by the control flow integrity (CFI)
technique [7], we propose a call path tracking technique that checks
call transfers, and apply it to detect hazardous UCPs.

The technique consists of static analysis and runtime enforce-
ment. In the beginning of the static analysis each node in the call
graph is in a separate set. The analysis then traverses the call graph.
For each call site, it finds out the dispatch target nodes, and merge
the sets that contain those nodes. In the end each of the sets left is
assigned with a unique set identifier (SID), and nodes in the same
set share the SID. In runtime before a call is issued, the expected
callee node’s SID along with the call site and the current encoding
ID value is saved. At the entry point of each statically loaded func-
tion, the expected SID is compared against the function’s SID. If
they are not equal, a hazardous UCP is detected. Consider the UCP
B → X → E for example. E is able to detect it as hazardous since
the expected SID set by B is not equal to E’s SID.

Once a hazardous UCP is detected, the encoding responds as
follows. First, the expected SID, the call site, the encoding ID, and
the current function’s identifier (E, in this case) are pushed onto
stack. The encoding ID is reset to zero, and the encoding continues.
At the exit point of E, the pushed information is popped to balance
the stack and recover the encoding variables. It is easy to see that
the technique allows benign UCPs; for example, in the case of B→
X→ D, the expected SID set by B is equal to D’s SID.

During decoding, whenever the ID is 0 and the current function’s
identifier is equal to the one on the stack top, it pops the information
from the stack to continue the decoding. Recall that the information
pushed on the stack can be due to invocation to an anchor node, a
hazardous UCP or a recursion. An extra integer can be used to
indicate the information type in each stack element.2

Alternative solutions exist. For example, we can maintain a vari-
able representing the depth of invocations of dynamically loaded
functions by incrementing and decrementing the variable at each
dynamically loaded function’s entry and exit points, respectively.
Such that each statically loaded function detects a UCP if the depth
is not zero. The reset and recover of the depth variable using a stack
are required when statically and dynamically loaded function calls
interleave. The main engineering advantage of the call path track-

2Our implementation borrows two bits from the method identifier
integer to identify the type of a push, so it does not need an extra
integer.

114

A

B C

D

F
E

G

1

1 1

JDK

1

Figure 7: JDK library classes are excluded from encoding.

ing solution is that instrumentation of dynamically loaded classes
is completely avoided, while in practice it is sometimes difficult or
infeasible to instrument them. For example, if they are loaded by
custom class loaders, the instrumentation component usually needs
to modify the custom loaders; and the security policy of some third-
party components does not allow instrumentation.

4.2 Flexible Encoding
It is desirable that we can perform a selective encoding for the

components of interest in order to reduce encoding overhead. For
example, the JVM and library methods are usually of less interest
compared to application ones, as JVM implementation and Java li-
braries are often considered “black boxes” [13]. When recovering
calling contexts, users may want to obtain all application methods,
while JVM and library methods can be ignored. PCC, for exam-
ple, redefines that a calling context consists of application functions
only and hence encodes application functions solely [14, 13].

Leveraging the call path tracking technique we can skip encod-
ing components of no interest the same way we handle dynamically
loaded classes to achieve a more efficient and flexible encoding. As
illustrated in Figure 7, JDK methods and the associated edges (de-
noted by dashed circles and lines) are of no interest and excluded
from the call graph when running Algorithm 2, and the encoding
is performed only on application methods. During runtime we rely
on the call path tracking to detect unexpected UCPs and encode
correctly.

Consider the calling context ABDFG for example. only edge AB is
encoded, while edges BD, DF and FG are skipped and hence no over-
head is incurred. G detects the hazardous UCP at its entry point, so
it responds as discussed in Section 4.1 and continues the encoding.
Finally, ABG, which consists of application methods only, can be
recovered from the encoding result.

It illustrates another advantage of the call path tracking solution
over the depth tracking one: no encoding or UCP detection code is
executed inside the excluded components, such that the more com-
ponents are excluded from encoding, the less overhead is incurred
by encoding.

5. IMPLEMENTATION
The implementation of DeltaPath consists of static analysis and

a runtime component. The input of the static analysis is the byte-
code of the target program. Besides, the user can optionally spec-
ify classes of interest for selective encoding. We use WALA [5] to
generate the call graph based on a context insensitive control flow
analysis, 0-CFA [40]. Algorithm 2 is then run to compute addition
values.

The runtime component is implemented as a Java agent [2]. Dur-
ing runtime it hooks the loading of each class and instruments the

call sites based on the static analysis results using Javassist [17].
Our implementation does not require the source code. It is not

dependent on a specific Java Virtual Machine (JVM); it can work
with any JVM compatible with JDK 5.0.

6. EVALUATION
In this section we present the effectiveness and efficiency our

encoding technique. We use the SPECjvm2008 benchmark suite
[4], which contains a variety of Java programs including compilers
(compiler.*), cryptography applications (crypto.*), scientific
computation (scimark.*), and xml applications (xml.*). All ex-
periments were performed on a machine with an Intel Core i7 CPU
and 8GB RAM. We used Ubuntu 10.04 and Sun JDK 1.6.0.24 on
this machine.

6.1 Static Program Characteristics
In SPECjvm a common dispatcher is used in all benchmarks to

configure the workload and collect results. It is excluded from the
encoding so that the statistics properly represent the characteristics
of individual benchmark programs.

The static analysis is performed in two encoding settings. One is
to encode functions of both JDK and application classes (encoding-
all) and the other encodes applications functions only (encoding-
application). The encoding-application setting corresponds to the
scenario that the user is only interested in application functions in
a calling context. Based on the call path tracking technique, Delta-
Path provides the flexibility of encoding only the components of
interest.

Table 1 presents the static characteristics of the benchmark pro-
grams with the two settings: encoding-all and encoding-application.
For each program, the table details the program size in bytes (size),
and for each encoding setting, the number of nodes (nodes) and
edges (edges) in the call graph, the number of call sites to be in-
strumented (CS), the number of virtual function call sites (VCS),
and the static maximum encoding ID value (max. ID) which repre-
sents the encoding space needed.

With the encoding-all setting, the majority of the benchmarks
(13 out of 15) need an encoding space larger than a million. Two
benchmarks (sunflow and xml.validation) in particular require
huge encoding spaces with numbers shown in bold, such that even a
64-bit integer is insufficient for encoding. Algorithm 2 resolves the
integer overflow problem automatically by adding 6 and 7 anchor
nodes for sunflow and xml.validation, respectively.

With the encoding-application setting, all programs need much
smaller encoding spaces. xml.transform benchmark needs a 64-
bit integer for encoding, while the encoding space of each other
benchmarks can fit into a 32-bit integer. In addition we observe that
with the encoding-application setting the call graph and the number
of instrumented call sites of each program are much smaller than
with the encoding-all setting, which implies efficiency benefit due
to the encoding flexibility.

6.2 Performance Comparison
We compare our work with the state of the art encoding tech-

nique, Probabilistic Calling Context (PCC) encoding [14], which
is a purely runtime mechanism representing each calling context
as an integer hash value. Similar to DeltaPath, PCC works with
object-oriented programs. The original PCC was implemented as a
module inside Jikes RVM, which is a research JVM allowing inter-
nal optimization options. For example, Jikes RVM’ inlining infor-
mation enables PCC to optimize the instrumentation by combining
multiple encoding computations within inlined functions into a sin-
gle one. Its performance overhead is very low on Jikes RVM, 3%

115

program size encoding-all encoding application
(bytes) nodes edges CS VCS max. ID nodes edges CS VCS max. ID

compiler.compiler 114K 2308 7329 7003 2839 7.8e7 112 77 93 31 12
compiler.sunflow 85K 1846 4185 5511 2490 9.6e7 117 83 104 43 12
compress 59K 1298 2675 3391 1394 4e5 98 65 93 57 32
crypto.aes 133K 2656 8201 8369 3487 2.5e9 99 69 91 40 25
crypto.rsa 133K 2656 8204 8386 3500 3.6e8 99 76 96 41 16
crypto.signverify 135K 2694 8290 8548 3576 2.5e9 96 68 108 47 37
mpegaudio 261K 3132 9734 9579 4116 3.3e14 252 284 497 317 130
scimark.fft.large 57K 1279 2636 3321 1347 4e5 78 37 41 19 5
scimark.lu.large 57K 1273 2616 3304 1331 2.2e6 76 34 40 10 4
scimark.monte_carlo 56K 1260 2590 3262 1311 1.4e6 62 22 24 10 4
scimark.sor.large 57K 1269 2614 3303 1339 1.4e6 73 28 32 10 4
scimark.sparse.large 57K 1265 2605 3291 1330 2.2e6 69 26 31 9 4
sunflow 458K 7727 25485 27135 13348 4.4e21 1069 2093 2995 1485 1.2e6
xml.transform 752K 9766 38010 44266 24969 1.2e17 1908 4389 6035 2162 1.2e10
xml.validation 478K 6703 23092 28333 15493 4.6e19 102 75 97 38 17

Table 1: Static program characteristics (SPECjvm2008). The maximum encoding ID values of sunflow and xml.validation, shown
in bold, are larger than the maximum value of a 64-bit integer (around 1.8e19), so the two benchmarks need anchor nodes.

Figure 8: Execution speeds applying PCC, DeltaPath without call path tracking (wo/CPT), and DeltaPath with call path tracking
(w/CPT), respectively. The speed means the throughput (operations per minute) that reflects the rate at which the system was able
to complete invocations of the workload of that benchmark, and it is normalized against the native runtime.

on average and 9% at most.
In order to have a head-to-head comparison on our platform, we

implemented PCC as a Java agent as well. Therefore, such low-
level optimizations are not performed. Note that this is not a limi-
tation of our algorithm but rather due to the implementation choice.
If our scheme is implemented in Jikes RVM as the original PCC,
both techniques can equally benefit from such low-level optimiza-
tions. In fact the composition of our encoding computations (sim-
ply adding up multiple additions into one) is as easy as in PCC,
and the call path tracking for the inlined functions can also be done
at compile time. The main focus of our experiments is to find out
whether our technique is comparable with PCC in terms of effi-
ciency and effectiveness using the same implementation technol-
ogy.

As the original PCC work encodes application functions only, we
adopt the encoding-application setting for DeltaPath to instrument
the same set of functions. Figure 8 illustrates the normalized ex-
ecution speed when our encoding technique and PCC are applied,
respectively. We use the geometric mean to calculate the average
slowdown. Overall DeltaPath (without call path tracking) incurs
32.51% slowdown on average with call path tracking introducing
extra 6.79% slowdown, while PCC incurs 0.5% higher overhead
than DeltaPath (without call path tracking). For the majority of the
benchmarks (11 out of 15 benchmarks), DeltaPath with call path
tracking incurs less than 6.5% overhead. In addition, both incur
high overhead in a few benchmarks (compress, mpegaudio, sci-

mark.monte_carlo and sunflow), as they contain a few small
hot functions; the overhead can be largely reduced if the optimiza-
tion of combining instrumentations is performed for inlined func-
tions. The results show that DeltaPath is comparable with PCC
in all benchmarks, which reflects the similarity of their runtime im-
plementation: both instrument the same set of call sites with simple
arithmetic operations.

At a low cost, DeltaPath provides a reliable and precise decod-
ing capability, which is the most critical difference between DeltaP-
ath and PCC. In contrast, Breadcrumbs [13], which is built on PCC
with the purpose of providing decoding capability, either incurs al-
most 100% overhead for a “very accurate” decoding, or sacrifices
reliability and accuracy significantly even at a moderate cost (extra
20% overhead over PCC).

6.3 Dynamic Program Characteristics
In order to evaluate the effectiveness of DeltaPath and PCC,

we collect the encoded calling contexts at the entry of the instru-
mented application functions. Table 2 presents the statistics. It
details the total number of calling contexts collected (total con-
texts), the maximum/average number of functions in a calling con-
text (max. depth and avg. depth), the number of unique calling con-
text encodings (unique contexts) collected by both techniques. For
DeltaPath we present additional information about the encoding
stack. The maximum/average depth of the the stack (max. depth
and avg. depth), the maximum/average number of hazardous UCPs

116

program
collected calling contexts PCC DeltaPath

total max. avg. unique unique max. avg. max. avg. max.
contexts depth depth contexts contexts depth depth UCP UCP ID

compiler.compiler 92634 15 5.1 141 165 11 2.3 3 1.8 4
compiler.sunflow 63705 12 5.4 156 185 8 2.3 2 1.6 4
compress 3243640985 12 10.0 113 114 2 1.0 2 0.0 31
crypto.aes 14431 9 5.6 194 217 2 1.6 2 1.0 15
crypto.rsa 538625 9 6.0 156 179 2 2.0 2 1.0 9
crypto.signverify 541682 9 6.0 228 242 2 2.0 2 1.0 23
mpegaudio 2489700943 17 13.4 389 427 3 1.0 2 0.0 66
scimark.fft.large 566237360 12 10.0 65 101 3 1.0 2 0.0 4
scimark.lu.large 188838329 10 10.0 53 54 2 1.0 2 0.0 2
scimark.monte_carlo 5033167760 11 10.0 34 35 2 1.0 2 0.0 1
scimark.sor.large 293603875 10 10.0 48 67 3 1.0 2 0.0 2
scimark.sparse.large 252002429 11 10.0 46 47 2 1.0 2 0.0 2
sunflow 2840077292 39 21.8 196612 200452 26 4.4 3 1.0 842711
xml.transform 92333406 55 15.5 24422 24556 25 3.1 3 0.1 66412
xml.validation 12900727 11 9.0 127 141 2 2.0 2 1.0 5

Table 2: Dynamic program characteristics (SPECjvm2008).

detected per calling context (max. UCP and avg. UCP), and the
maximum dynamic encoding ID (max. ID) are presented.

DeltaPath represents each calling context using a stack. Ideally,
the stack only contains one element recording the entry node; when
the calling context contains recursions, anchor nodes or hazardous
UCPs, the depth increases. The maximum/average number of haz-
ardous UCPs is not high, showing that hazardous UCPs are de-
tected in all benchmarks although they are infrequent. The average
stack depth is 1∼4.4 varying among the 15 benchmarks, compared
to the original calling context depth (5.1∼21.8). PCC uses only
one integer to represent a calling context, which is more concise
than DeltaPath. However, PCC collects fewer unique calling con-
text encodings due to hash collisions, implying that some calling
contexts obtain identical encoding results. Therefore, for applica-
tions that do not need decoding and allow occasional encoding col-
lisions, such as test coverage and profiling, PCC is a better choice;
however, for applications that require precise encoding or decod-
ing, DeltaPath is generally superior to PCC and Breadcrumbs.

7. RELATED WORK
Stack Walking. Stack walking is commonly used to obtain

calling contexts in debugging [1] and error reporting [6, 3]. How-
ever, for applications that need continuously capture calling con-
texts, it usually incurs excessive overhead.

Dynamic Calling Context Tree. A dynamic calling context
tree (CCT) [8, 46] is a summary of calling contexts represented
as a tree data structure. Maintaining a complete CCT incurs large
space and time overhead, while a CCT obtained using sampling
may miss contexts of interest. In contrast, calling context encoding
approaches [41, 42, 14, 13] including our work provide concise
representation of all calling contexts.

Path Profiling. Ball and Larus developed an algorithm to en-
code intraprocedural control flow paths [10]. Melski and Reps ex-
tended the work by capturing both inter- and intraprocedural con-
trol flow [36]. It encodes the whole control flow transfer history
leading to a program point, but their approach does not scale, be-
cause there exist too many possible paths for nontrivial programs,
and the inserted code is complex. Calling context encoding targets
a succinct representation of active methods on the call stack with
high efficiency.

Precise Calling Context Encoding. Sumner et al. proposed

a precise calling context encoding technique that allows decod-
ing [41, 42]. However, it does not work well with object-oriented
programming, large-scale software, and dynamic class loading. The
challenges are resolved in our work.

Probabilistic Calling Context. Probabilistic calling context
[14] by Bond et al. provides an encoding technique that works with
OO programs. The encoding result is essentially a hash value of
the identifiers of the functions in the calling context. Its advantages
over DeltaPath are that the encoding result is consistently only one
integer and it does not need static analysis. However, PCC does
not provide decoding. Their later work addresses this shortcom-
ing by combining call graph analysis and recording of encoding
results [13]. Due to the hash based encoding nature, it remains as
a probabilistic approach in essence thus leaving the decoding stage
inaccurate, unreliable and/or expensive. In addition, its decoding
has to be offline. In production systems where precise and timely
response is needed, deterministic and instant decoding, which is
supported by DeltaPath, is a highly desired property.

8. FUTURE WORK
Pruned and Relative Encoding. In applications such as event

logging and profiling where the functions of interest are known and
the user only needs to capture the calling contexts of those target
functions, we can perform a pruned encoding by skipping encoding
functions that do not invoke target functions directly or indirectly.
For example, in Figure 4, assume the user’s interest is the calling
contexts of functions D and F; with a simple static analysis we can
find E and G do not lead to the target functions, thus we can skip
the encoding operations in E and G. This should boost the encod-
ing efficiency for those applications. Moreover, we can exploit the
relative positions of the target functions for encoding. For exam-
ple, after the encoding result of ABD is stored, to encode ABDF, we
simply represent the result as a reference to the previous encoding
result and an encoding relative to D, that is, DF. It may reduce the
storage space of encoding results.

Hybrid Encoding. PCC has a compact representation of the
encoding result with a lack of precise decoding capability, while
DeltaPath complements PCC. So a hybrid encoding approach com-
bining PCC and DeltaPath can be interesting and useful. For exam-
ple, we can perform profiling to establish the mapping between a
set of calling contexts that are most frequently generated in a pro-

117

gram and their PCC encoding values, so that we can decode such
a PCC value based on the mapping. The functions in those call-
ing contexts form the trunk in the program’s call graph, where we
run PCC encoding. In the remaining part of the program we per-
form DeltaPath encoding with the functions in the trunk working
as anchor nodes. Alternatively, we can substitute a calling context
tree construction for the PCC encoding. Either hybrid encoding
has the potential to shorten the encoding result and reduce the en-
coding space pressure without harming the decoding capability of
DeltaPath.

Optimizations. In addition to the composition of instrumen-
tation operations in inlined functions, there are other optimization
opportunities. Our implementation accesses thread-local variables,
which are used to store the current encoding result for each thread,
via Java library APIs. If we build DeltaPath into a custom JVM,
we can reserve a register to point to thread-local storage to speed
up, which is adopted in the implementation of PCC in Jikes RVM.
PCCE profiles the program and then picks hot edges as encoding
free ones, that is, those with the addition value as zero. DeltaPath
can also benefit from this strategy. Moreover, since the invoca-
tion target of a call to a private, static or final function is
fixed, it is impossible that such a call invokes a method in a dy-
namically loaded class, so those calls do not need to be tracked
to detect dynamically loaded classes; if the functions in statically
loaded classes that interact with (i.e., invoke or are invoked by)
functions in dynamically loaded classes are pre-known, we only
need to enforce call path tracking in those functions.

9. CONCLUSION
We present DeltaPath, a precise calling context encoding tech-

nique that works with both procedural and object-oriented pro-
grams. It encodes virtual function calls correctly, and resolves the
encoding space explosion problem in large-scale programs. Call
path tracking is proposed to deal with dynamic class loading and
is applied to achieve the flexibility of encoding only the program
components of interest. Compared to probabilistic calling context
encoding, DeltaPath has similarly high efficiency with the advan-
tage of precise decoding.

Acknowledgments
We would like to thank the anonymous reviewers for their con-
structive suggestions and comments. Many thanks to authors of
PCCE [41], William N. Sumner and Xiangyu Zhang, for their valu-
able feedback on the paper.

10. REFERENCES
[1] gdb: The GNU Project Debugger.

http://sources.redhat.com/gdb/.
[2] Java Virtual Machine Tool Interface (JVM TI).

http://docs.oracle.com/javase/6/docs/

technotes/guides/jvmti/.
[3] Linux Kernel Oops. https://www.kernel.org/doc/

Documentation/oops-tracing.txt/.
[4] SPECjvm2008: Java Virtual Machine Benchmark.

http://www.spec.org/jvm2008/.
[5] T. J. Watson Libraries for Analysis (WALA).

http://wala.sourceforge.net/.
[6] Windows Error Reporting (WER).

http://msdn.microsoft.com/en-us/library/

windows/desktop/bb513641(v=vs.85).aspx.
[7] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In Proceedings of the 12th ACM

Conference on Computer and Communications Security,
pages 340–353, 2005.

[8] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive
profiling. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 85–96, 1997.

[9] D. C. Arnold, D. H. Ahn, B. R. Supinski, G. Lee, B. P.
Miller, and M. Schulz. Stack trace analysis for large scale
debugging. In Proceedings of the 21st IEEE International
Parallel and Distributed Processing Symposium, 2007.

[10] T. Ball and J. R. Larus. Efficient path profiling. In
Proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 46–57, 1996.

[11] K. Bartz, J. W. Stokes, J. C. Platt, R. Kivett, D. Grant,
S. Calinoiu, and G. Loihle. Finding similar failures using
callstack similarity. In Proceedings of the 3rd Conference on
Tackling Computer Systems Problems with Machine
Learning Techniques, pages 1–1, 2008.

[12] D. Binkley. Semantics guided regression test cost reduction.
IEEE Transactions on Software Engineering, 23(8):498–516,
1997.

[13] M. D. Bond, G. Z. Baker, and S. Z. Guyer. Breadcrumbs:
efficient context sensitivity for dynamic bug detection
analyses. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation,
pages 13–24, 2010.

[14] M. D. Bond and K. S. McKinley. Probabilistic calling
context. In Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems and
Applications, pages 97–112, 2007.

[15] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and
K. S. McKinley. Tracking bad apples: reporting the origin of
null and undefined value errors. In Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications, pages 405–422,
2007.

[16] A. Chakrabarti and P. Godefroid. Software partitioning for
effective automated unit testing. In Proceedings of ACM &
IEEE International Conference on Embedded Software,
pages 262–271, 2006.

[17] S. Chiba. Javassist - a reflection-based programming wizard
for java. In Proceedings of the ACM OOPSLA Workshop on
Reflective Programming in C++ and Java, 1998.

[18] T. M. Chilimbi and V. Ganapathy. Heapmd: Identifying
heap-based bugs using anomaly detection. In Proceedings of
the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
219–228, 2006.

[19] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and
K. Vaswani. Holmes: Effective statistical debugging via
efficient path profiling. In Proceedings of the 31st
International Conference on Software Engineering, pages
34–44, 2009.

[20] J. Clause and A. Orso. Leakpoint: Pinpointing the causes of
memory leaks. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume
1, pages 515–524, 2010.

[21] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly detection using call stack information. In
Proceedings of the IEEE Symposium on Security and
Privacy, pages 62–75, 2003.

118

[22] P. Francis, D. Leon, M. Minch, and A. Podgurski. Tree-based
methods for classifying software failures. In Proceedings of
the 15th International Symposium on Software Reliability
Engineering, pages 451–462, 2004.

[23] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and G. Hunt.
Debugging in the (very) large: ten years of implementation
and experience. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, pages
103–116, 2009.

[24] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 213–223, 2005.

[25] J. Ha, C. J. Rossbach, J. V. Davis, I. Roy, H. E. Ramadan,
D. E. Porter, D. L. Chen, and E. Witchel. Improved error
reporting for software that uses black-box components. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
101–111, 2007.

[26] H. Inoue. Anomaly Detection in Dynamic Execution
Environments. PhD thesis, 2005.

[27] L. Jiang and Z. Su. Context-aware statistical debugging:
From bug predictors to faulty control flow paths. In
Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering, pages
184–193, 2007.

[28] J. A. Jones and M. J. Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. In
Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering, pages 273–282, 2005.

[29] R. E. Jones and C. Ryder. A study of java object
demographics. In Proceedings of the 7th International
Symposium on Memory Management, pages 121–130, 2008.

[30] R. Joshi, M. D. Bond, and C. Zilles. Targeted path profiling:
Lower overhead path profiling for staged dynamic
optimization systems. In Proceedings of the International
Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, pages
239–250, 2004.

[31] S. Kim, T. Zimmermann, and N. Nagappan. Crash graphs:
An aggregated view of multiple crashes to improve crash
triage. In Proceedings of the IEEE/IFIP 41st International
Conference on Dependable Systems&Networks, pages
486–493, 2011.

[32] A. J. Ko and B. A. Myers. Debugging reinvented: asking and
answering why and why not questions about program
behavior. In Proceedings of the 30th International
Conference on Software Engineering, pages 301–310, 2008.

[33] J. R. Larus. Whole program paths. In Proceedings of the
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 259–269, 1999.

[34] J. Law and G. Rothermel. Whole program path-based

dynamic impact analysis. In Proceedings of the 25th
International Conference on Software Engineering, pages
308 – 318, 2003.

[35] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu. Mining behavior
graphs for “backtrace” of noncrashing bugs. In Proceedings
of SIAM International Conference on Data Mining, pages
286–297, 2005.

[36] D. Melski and T. W. Reps. Interprocedural path profiling. In
Proceedings of the 8th International Conference on
Compiler Construction, Held as Part of the European Joint
Conferences on the Theory and Practice of Software, pages
47–62, 1999.

[37] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
89–100, 2007.

[38] A. Rountev, S. Kagan, and J. Sawin. Coverage criteria for
testing of object interactions in sequence diagrams. In
Proceedings of the Conference on Fundamental Approaches
to Software Engineering, pages 289–304, 2005.

[39] J. Seward and N. Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In Proceedings of
the Annual Conference on USENIX Annual Technical
Conference, pages 2–2, 2005.

[40] O. Shivers. Control flow analysis in scheme. In Proceedings
of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 164–174, 1988.

[41] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang.
Precise calling context encoding. In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering - Volume 1, pages 525–534, 2010.

[42] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang.
Precise calling context encoding. IEEE Transactions on
Software Engineering, 38(5):1160–1177, 2012.

[43] K. Vaswani, A. V. Nori, and T. M. Chilimbi. Preferential path
profiling: compactly numbering interesting paths. In
Proceedings of the 34th annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
351–362, 2007.

[44] T. Zhang, X. Zhuang, S. Pande, and W. Lee. Anomalous path
detection with hardware support. In Proceedings of the
International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, pages 43–54, 2005.

[45] X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing long
running programs through execution fast forwarding. In
Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages
81–91, 2006.

[46] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi.
Accurate, efficient, and adaptive calling context profiling. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
263–271, 2006.

119

