
BEST: A Symbolic Testing Tool for Predicting
Multi-threaded Program Failures

Malay K. Ganai† Nipun Arora⋆ Chao Wang† Aarti Gupta† Gogul Balakrishnan†

†NEC Labs America, Princeton, USA ⋆Columbia University, New York, USA

Abstract—We present a tool BEST (Binary instrumentation-
based Error-directed Symbolic Testing) for predicting concur-
rency violations.1 We automatically infer potential concurrency
violations such as atomicity violations from an observed run
of a multi-threaded program, and use precise modeling and
constraint-based symbolic (non-enumerative) search to find fea-
sible violating schedules in a generalization of the observed run.
We specifically focus on tool scalability by devising POR-based
simplification steps to reduce the formula and the search space
by several orders-of-magnitude. We have successfully applied
the tool to several publicly available C/C++/Java programs and
found several previously known/unknown concurrency related
bugs. The tool also has extensive visual support for debugging.

I. INTRODUCTION

The growth of cheap and ubiquitous multi-processor sys-
tems and concurrent library support are making concurrent

programming very attractive. However, verification of multi-
threaded concurrent systems remains a daunting task espe-

cially due to complex and unexpected interactions between

asynchronous threads. Concurrency bugs often arise due to
atomicity violations, i.e., non-atomic execution of code regions

that are intended to be atomic. Atomicity is a semantic

correctness notion for concurrent programs, and is meant to
capture the programmers intents [2], [3].

To expose a concurrency bug, a test case should not only

provide a bug-exposing input, but also provide a bug-triggering
execution interleaving. Unfortunately, testing a program for

every interleaving on every test input is often practically

impossible. Even for a given concrete trace, there can be
exponentially many alternate interleavings (i.e., generalization)

of the observed events in the trace.

To overcome the issue of exponential interleaving space, the

current testing methodology [4]–[15] is focused on exploring
a “meaningful” subset of thread interleaving for a given test

input. CHESS tool [7], for example, restricts the set to a
bounded number of pre-emptive context switches. Tools such

as AtomFuzzer [8], CTrigger [9] attempt to explore low-

probability interleavings using random sleep delays. Although
that helps reduce the set, the unexplored set may still be

very large, thereby, miss many errors. Alternatively, tools such

as jPredictor [10], HAVE [11], and PENELOPE [15] predict
atomicity violations in some generalization of the observed

trace. However, the used generalization is restrictive (i.e., may

miss errors), prediction is imprecise (i.e., may predict spurious

1This tool paper highlights our scientific contributions, and summarizes the
key details and experimentation as described in the paper [1].

schedules due to data abstraction), and the search method is

enumerative.

To address the above mentioned issues, we propose a tool

BEST (Binary instrumentation-based Error-directed Symbolic

Testing) for predicting atomicity violation2 in a generalization
of an observed trace. Specifically, it:

• misses no errors by using a complete generalization,

• reduces spurious schedules using precise modeling of data
and synchronization primitives,

• predicts atomicity violation based on constraint-based sym-

bolic (non-enumerative) search,
• infers atomicity properties automatically, and

• dynamically instruments unmodified binary (of the pro-

gram) for recording events.

II. BEST FRAMEWORK

Our framework, as shown in Figure 1, are divided in five
stages: (I) record trace events and build a concurrent trace

model (CTM), (II) simplify CTM by reducing transitions and

context switches, (III) infer and generate atomicity properties,
(IV) find atomicity violation with property-specific symbolic

analysis, and (V) provide debugging support.

Stage I. During an execution of a multi-threaded program

under a test harness, we instrument a given target binary
dynamically (using PIN [16]) to record various events such as

synchronization and memory accesses. From these recorded
events, we construct a concurrent trace model (CTM), illus-

trated as follows:

Consider a run σ of statement sequence s1 · · · s16 of a

concurrent program P , comprising interacting threadsMa and

Mb with local variables ai and bi, respectively, and shared
(global) data variables X,Y, Z, and synchronization variables

S,L1, L2. This is shown in Figure 2(a) where threads are

synchronized with lock/unlock and wait/notify. From the run,
we obtain a CTM as shown in Figure 2(b), where a thread

transition such as (2a, true, Z := Z+1, 3a) (also represented

as 2a
Z:=Z+1→ 3a) can be viewed as a generator of access event

RW (Z) corresponding to the atomic read and write access of

the shared variable Z .

A CTM can be viewed as a generalizer of the observed

trace. Alternatively, it is a generator for both the original

run σ and all the other runs obtained by relaxing the order

2Although we skip the discussion (due to space reasons) for finding other
concurrency related issues such as data races, deadlocks, and order violations,
the tool has the capability to find them.

978-1-4577-1639-3/11/$26.00 c© 2011 IEEE ASE 2011, Lawrence, KS, USA

596

������� ���

���	
�

����� �	���

���

�
��� �	��� �����

������

�	����	�

	����
��

����
��� ���������

������ ������	

���	�����	�

������ ��������

������������
���������

��
��� ����
� �

��� ��
��

�����

• ��
�� �	��� �
�����	�

������	 	
��
���
���

• ��������� ��������� �	�����

������

��
���
���

• ���������
��������

�	����� ������

����� �	���� �������

• �� ����� ���	�����������

• �� 	�
������� �
	������

����� �	���� �������

• ���	�� ���
	��������	���

• ���	�� ��	��
�������	����	���

������	� �	�����	
 ������	���

• ����� ��	������ ���������

• ����� ������ ��	������ �����

������ ��

��	������

	��
��

������	
 ������

�����

���
 �
	��
���

��
���
���

���
 �
	��
���

�	��� ���
������
 ��� �	��� ����
��������� �	�����	
 ���������	��� �	��� ���
������	
��������� �
����� ���
���

������	
��������� ���������	��� ������ 	
����

����� ����
 ������

�	��� ��
����� ���������	���

�
�
��
�
�
�
�
�
�
�
�

��
���

�	��� ��
����� ������

Fig. 1. BEST architecture

of trace events induced by non-deterministic scheduling but

maintaining thread program order and fork/join semantics.

The lattice (in Figure 2(c)) represents a complete trace

generalization of the observed trace. Each node in the lattice
denotes a global control state (and a possible context switching

point), shown as a pair of thread local control states. (The

nodes marked with • are described in the next stage.) An edge
denotes a shared event write/read/both access(es) of a global

variable, labeled withW (.)/R(.)/RZ(.), lock(.)/unlock(.), and
wait/notify. Note, some interleavings are infeasible due to

lock/unlock, which we have crossed out (×) in the figure.

Although the observed run σ does not show any violation,
various concurrency related bugs can occur in its generaliza-

tion. For instance, an alternate run (of the same statements)

σ′ ≡ s6 · s7 · s8 · s1 · s12 · s2 · s13 · s3 can cause the following
errors: mismatched wait/notify (s7 before s3, and hence, before
s5), data races (potential simultaneous execution of s2 and

s13), deadlock (thread-states at s4 and s14), and an atomicity

violation (s13 interrupts intended atomicity of s2,s3).
Trace generalization used here is less restrictive than

jPredictor (where non-sequential consistent interleavings

are eliminated) and PENELOPLE (where non-matched

wait/notify interleavings are eliminated).

Stage II. We perform the following steps to simplify a CTM.
First, we identify local (i.e., unshared) variables. Then, we

merge a local transition (i.e., with no shared access) with

the following transition in the thread program order, and
rewrite the update expressions. We apply this transformation

recursively. This step reduces the number of transitions by up
to three times in our experiments.

We use lockset and happen-before (HB) analysis to identify
the lock protected transitions and must happen-before such

as fork/join, and eliminate infeasible context switches. This

step gives a reduction of up to two orders-of-magnitude in the
number of context switches in our experiments.

We then use a POR analysis (proposed for two or more
threads [17]) to eliminate context switches corresponding to

redundant interleavings (i.e., which are equivalent [18] to

admitted interleavings). This step gives up to three orders-

of-magnitude additional reduction in the number of context
switches over lockset/HB analysis in our experiments.

The nodes marked with • in the lattice (Figure 2(c)) show

the context switches allowed under POR analysis. The smaller

set of context switches so obtained not only reduces the set of
necessary thread interleavings to explore, but is also adequate,

i.e., it includes every feasible interleaving (or its equivalent)
in the CTM. From the (reduced) set of context-switches,

we derive a set of independent transactions3 (denoted as

I-transactions) such that context-switches are needed only at
the begin and end of such transactions. The I-transactions
derived for threads Ma and Mb are {ta1, ta2, ta3, ta4} and

{tb1, tb2, tb3, tb4}, respectively (shown in Figure 2(b)-(c)).

Stage III. On a simplified CTM, we infer user-intended atomic

regions (denoted as E-transactions4) that may involve multiple

variable accesses based on code structure. Each atomic region
should satisfy the following:

• there should be at least one shared access on a non-

synchronization variable, and the first and/or last shared

accesses should be on non-synchronization variable(s)
• the shared accesses should be within a procedure bound-

ary (may include call-sites or system calls/returns)

• the source lines corresponding to shared accesses should
be less than threshold distance (code statement proximity)

• no happen-before transition such as thread creation/join

or wait within the region (notify is allowed)

From a given binary (assuming a debug version) we use

a gnu utility such as objdump to obtain a mapping between
processor instruction and corresponding source file and line in-

formation. We use this information to tag each transition with a

tuple 〈file, line#〉. Following the above guidelines, we then
infer atomic regions (i.e., E-transactions) as illustrated with

3An independent transaction (i.e., I-transaction) [19] is a sequence of
transitions that are atomic w.r.t to all schedules of a CTM.

4E-transactions are atomicity specification that we want to validate, whereas
I-transactions are derived from the given system under test, and are used to
reduce the search space of symbolic analysis.

597

Thread Ma Thread Mb

s1: lock(L2);
s2: a :=++Z;
s3: X := malloc(a);
s4: lock(L1);
s5: wait(S,L1);

s6: lock(L1);
s7: notify(S);
s8: unlock(L1);

s9: unlock(L2);
s10: Y := 0
s11: unlock(L1);

s12: lock(L1);
s13: Y := &X[Z-1];
s14: lock(L2);
s15: unlock(L2);
s16: unlock(L1);

tb1 tb2 tb3
tb4

ta1

ta2

ta3

ta4

lock(L2)
1a

2a

3a

4a

5a

1b

2b

3b

4b

5b

Z=Z+1

a1=Z

X=malloc(a1)

lock(L1)

lock(L1)

unlock(L1)

lock(L1)

S=1

6a

7a

8a

unlock(L1)
S = 0

g: [S>0]

lock(L1)
S = S-1

9a

10a

unlock(L2)

Y=0

11a

6b

b1=Z-1

b2=X

7b

8b

Y=b1+b2

9b

lock(L2)

10b

unlock(L2)

11b

unlock(L1)
unlock(L1)

w
a
it

p
re

w
a
it

p
s
t

“
a
to

m
ic

”

 i
n

te
n

d
e
d

n
o

ti
fy

“
a
to

m
ic

”

 i
n

te
n

d
e
d

ta1

ta2

ta3

ta4

tb
1

tb2

tb3

tb4

(a) (b) (c)
Fig. 2. (a) Executed statements in a run σ, (b) Concurrent Trace Model (CTM), (c) Lattice representing generalization of the trace σ, and a necessary and
sufficient set of context switches (marked with •) derived under partial-order reduction.

the following example. Consider an object dump, shown in

.......

./atom.c:59

pthread_mutex_lock(l2);

.......

8048776: e8 c1 fd ff ff call 804853c

./atom.c:61

++Z;

804877b: a1 28 9a 04 08 mov 0x8049a28,%eax

8048780: 83 c0 01 add $0x1,%eax

8048783: a3 28 9a 04 08 mov %eax,0x8049a28

./atom.c:63

X = (char *)malloc(Z);

8048788: a1 28 9a 04 08 mov 0x8049a28,%eax

804878d: 89 04 24 mov %eax,(%esp)

8048790: e8 97 fd ff ff call 804852c

8048795: a3 2c 9a 04 08 mov %eax,0x8049a2c

./atom.c:65

pthread_mutex_lock(l1);

80487a1: e8 96 fd ff ff call 804853c

.......

��
��
�
��
�

�	
�

	
�

�

Fig. 3. Inferring atomicity with objdump using code structure

Figure 3, for the statements s1 · · · s4 of our running example.

The transition corresponding to s1, i.e., (2a → 3a) is assigned
a tag 〈atom.c, 61〉. Similarly, the transitions corresponding

to s2, i.e., (3a → 4a) and (4a → 5a) are both assigned
the tag 〈atom.c, 63〉. Using the rules for inferring atomic

regions, we mark the transitions corresponding to statements

s2 and s3 to be atomic. Similarly, we infer that the transitions
corresponding to s13 (and s10) are expected to be atomic.

We remove those regions which are observed to violate

the atomicity (in the given trace). We prune out those which
are “proved atomic” (i.e., when an inferred E-transaction
is subsumed by some derived I-transaction). From the
remaining regions, we derive atomicity properties. We use

causal atomicity (CA) [20] that checks the atomicity violation

of an atomic region. We also use a new notion of causal

mutual atomicity (CMA) which checks the atomicity violation

of pair-wise atomic regions corresponding to different threads

with at least two conflicting transitions. Empirically, we

found CMA to be more useful (in finding more violations)
and simpler to check (more scalable) than CA.

Stage IV. For each derived atomicity property (CA or CMA),
we first carry out property preserving (i.e., sound) slicing of

the CTM (obtained in stage II). This is followed by sound

simplification steps such as merging and POR analysis on the
sliced CTM. These steps give additional orders-of-magnitude

reduction in the number of context switches (more for a CMA

than a CA property.)

We devise an algorithm FindAV for checking atomicity
violation (AV) precisely. For each property, we efficiently

encode the AV condition along with a symbolic set of sched-

ules (feasible in the sliced CTM) as a quantifier-free SMT
(Satisfiability Modulo Theory) formulas. We implemented a

SMT-based decision procedure (in FindAV) to find a feasible

schedule violating the atomicity property, i.e., if and only if

one exists in the sliced CTM w.r.t. the property. (As checks

are independent, we plan to parallelize them in future).

The highlights of our symbolic encoding are as follows:
(a) it does not require an external bound on the number

of context switches, (b) the worst case size of the encoded

formula is quadratic in the number of observed shared access
events, and (c) it leverages POR techniques to reduce both

the formula size and the search space.

Stage V. For replaying a bug-triggering schedule, we instru-
ment the binary (during runtime) to carry out an orchestrated

execution using an externally provided schedule, overriding
default OS scheduling. We also provide visualization of such a

schedule, where each trace event is mapped to the correspond-

ing source statements. The mapping information is derived
from the objdump, where each corresponding transition is

tagged with a tuple 〈file, line#〉 (similar to stage III).

598

III. IMPLEMENTATION AND EVALUATION

Implementation. We use gcc/g++/gcj compilers to trans-

form C/C++/Java programs to x86 binaries, respectively.

During runtime, we instrument the application binary and dy-
namically loadable libraries such as pthread using PIN [16]

to record the synchronization events such as wait/notify,

lock/unlock, fork/join, sem wait/sem post, and heap memory
accesses. We use SMT solver Yices-1.0.29 [21] in our de-

cision procedure. We use an SMT encoding [22] (improvised

over [23]) to obtain a set of feasible schedules.
For practical reasons, we do not record local accesses

such as stack reads/writes. In such cases, CTM would be

an abstraction of the actual program execution, and the
AV schedules although feasible in CTM may be spurious,

i.e., not replayable. Currently, we suppress reporting such

spurious schedules, although we did not see such a case in
our experimentation (due to precise modeling).5

Experimentation. We experimented with several multi-
threaded publicly available applications [24], [25] (written in

C/C++/Java) with 1K-33K LOC such as aget (1.2KLOC,

C), fastspy (1.5KLOC, C), finalsolution (2KLOC, C++),
prozilla (2.7KLOC, C++), axel (3.1KLOC, C), bzip2smp

(6.4KLOC, C), alsaplayer (33KLOC, C++), and tsp (713,

Java). The number of trace events ranges from a few
hundreds to 34K, and number of threads ranges from 4 to

67. Most atomic regions involve multiple variable accesses.

Time per check on average is around a few seconds. CMA
checking generally is more robust compared to CA checking.

We observed at least an order of magnitude more reduction in
the number of context switches per CMA property compared

to per CA property. All the found AV schedules were feasible.

We found several previously known/unknown AV bugs (Bug
list can be found here [26]).

The combination of various steps in stages II and IV help in

reducing the context switches by a few orders of magnitude.

Similarly, these steps reduce the number of transitions signif-
icantly (by an order in some cases). Overall, these reductions

play a crucial role in improving the scalability of our tool.

IV. BENEFITS AND CONTRIBUTIONS

Although several runtime tools for predicting atomicity
violation exist, namely, jPredictor [10], HAVE [11], Side-

Track [12], CTrigger [9], and PENELOPE [15], our tool

provides a unique combination of the following:

• Generalization: Our scope of generalization is complete.

There is no restriction on admitted schedules such as

nested locking, race-freedom, and matched wait/notify.
• Precision: Our modeling of synchronization and data path

variables is precise. Our symbolic encoding captures all

and only feasible schedules.
• Scalability: Our POR-based simplification steps reduces

both the size of decision problems and the search
space by orders-of-magnitude. Our prediction is based

on constraint-based symbolic search, and avoids explicit

enumeration of a prohibitively large set of schedules.

5In future, we plan to re-execute the binary with the non-replayable AV
schedule, build a different CTM, and then apply stages I-IV.

• Flexibility: Our atomicity checking algorithm handles
various notions of atomicity violation.

The salient features of our tool are: effective staged sim-
plification and reduction enabling scalable symbolic search,

automatically inferring atomic regions from a concrete execu-
tion, generating atomicity violating schedules that exhibit real

bugs and scope for task parallelization.

REFERENCES

[1] M. Ganai. Scalable and precise symbolic analysis for atomicity viola-
tions. In ACM Transactions on Software Engineering Method, 2011.

[2] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
PLDI, 2003.

[3] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints
with data in an object-oriented language. In Proc. of POPL, 2006.

[4] M. Xu, R. Bodik, and M. D. Hill. A serializability violation detector
for shared-memory server programs. In PLDI, 2005.

[5] S. Lu, J. Tucekt, F. Qin, and Y. Zhou. AVIO: detecting atomicity
violations via access interleaving invariants. In Architectural Support
for Programming Languages and Operating Systems, 2006.

[6] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou.
MUVI: automatically inferring multi-variable access correlations and
detecting related semantic and concurrency bugs. In Symposium on
Operating Systems Principles, 2007.

[7] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent programs.
In Proc. of OSDI, 2008.

[8] C.-S. Park and K. Sen. Randomized active atomicity violation detection
in concurrent programs. In International Symposium on the Foundations
of Software Engineering, 2008.

[9] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity violation
bugs from their hiding places. In ASPLOS, 2009.

[10] F. Chen, T. F. Serbanuta, and G. Rosu. jPredictor: A predictive
runtime analysis tool for java. In International Conference on Software
Engineering, 2008.

[11] Q. Chen, L. Wang, Z. Yang, and S. Stoller. HAVE: Detecting atomicity
violations via integrated dynamic and static analysis. In Proc. of FASE,
2009.

[12] J. Yi, C. Sadowski, and C. Flanagan. SideTrack: Generalizing dynamic
atomicity analysis. In Proc. of PADTAD, 2009.

[13] A. Farzan, P. Madhusudan, and F. Sorrentino. Meta-analysis for
atomicity violations under nested locking. In Proc. of CAV, 2009.

[14] C. Wang, R. Limaye, M. Ganai, and A. Gupta. Trace-based symbolic
analysis for atomicity violations. In Proc. of TACAS, 2010.

[15] F. Sorrentino, A. Farzan, and M. Parthasarathy. PENELOPE: weaving
threads to expose atomicity violations. In International Symposium on
the Foundations of Software Engineering, 2010.

[16] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney,
S. Wallace, V. J. Reddi, and K. M. Hazelwood. PIN: Building
customized program analysis tools with dynamic instrumentation. In
PLDI, 2005.

[17] M. K. Ganai and S. Kundu. Reduction of Verification Conditions for
Concurrent System using Mutually Atomic Transactions. In Proc. of
SPIN Workshop, 2009.

[18] A. Mazurkiewicz. Basic Notions of Trace Theory. In Workshop on
Linear Time, Branching Time and Partial Order in Logics and Models
for Concurrency, volume 354 of LNCS, pages 285–363. Springer-Verlag,
1988.

[19] M. Ganai and C. Wang. Interval analysis for concurrent trace programs
using transaction sequence graphs. In Proc. of Runtime Verification,
2010.

[20] A. Farzan and P. Madhusudan. Causal Atomicity. In Proc. of CAV,
2006.

[21] SRI. Yices: An SMT solver. http://fm.csl.sri.com/yices.
[22] M. K. Ganai. Efficient symbolic analysis for trace generalization. In

Under Submission, 2011.
[23] M. K. Ganai and A. Gupta. Efficient modeling of concurrent systems

in BMC. In Proc. of SPIN Workshop, 2008.
[24] Geeknet Inc. Freshmeat. http://freshmeat.net.
[25] Geeknet Inc. SourceForge. http://sourceforge.net.
[26] M. K. Ganai. Conference Notes. http://www.nec-

labs.com/∼malay/notes.htm.

599

