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Abstract—To diagnose performance problems in production
systems, many OS kernel-level monitoring and analysis tools have
been proposed. Using low level kernel events provides benefits
in efficiency and transparency to monitor application software.
On the other hand, such approaches miss application-specific
semantic information which can be effective to differentiate
the trace patterns from distinct application logic. This paper
introduces new trace analysis techniques based on event features
to improve kernel event based performance diagnosis tools. Our
prototype, AppDiff, is based on two analysis features: system
resource features convert kernel events to resource usage metrics,
thereby enabling the detection of various performance anomalies
in a unified way; program behavior features infer the application
logic behind the low level events. By using these features and
conditional probability, AppDiff can detect outliers and improve
the diagnosis of application performance.
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I. INTRODUCTION

Localizing performance anomalies in enterprise software
systems have constraints different from conventional debug-
ging environments. A monitoring agent for deployed systems
should run efficiently with minimal overhead. Otherwise per-
formance overhead of the monitoring software can hide the
performance problems. While using the source code is effective
for debugging in a typical scenario using commercial off-the-
shelf software, administrators lack knowledge of the software.
Moreover the source code of third party software components
is often not available. Efficient black-box performance debug-
ging is in high demand for production systems.

There have been several major approaches in traditional
program debugging to localize performance anomalies in soft-
ware. Traditional debugging [1], [2], [3] takes application
programs executed in a debugging mode (e.g., single-step
mode, ptrace, and dynamic compilation). While this approach
provides a fine grained control and detailed information deep
inside the program, it inhibits the observation of workload with
the full fidelity for deployed systems because the overhead
prevents the program from executing in full production-level
speed.

Other approaches [4], [5], [6], [7], [8] embed a monitoring
agent into the program by modifying source code or binary
code and observe the program’s behavior in a fine grained
way. These approaches have advantages in understanding ap-
plication status since internal information such as transactions,

978-1-4799-0913-1/14/$31.00 (© 2014 IEEE

functions, or objects are visible to the monitoring agent [5],
[7], [8]. Such approaches would be effective if source code
is available or software relies on common libraries whose
structures are well known. However, proprietary software or
third-party components provided in the binary format will limit
the applicability of such approaches.

There is another family of approaches that uses low level
events (e.g., system calls) to determine application status [9],
[10], [11], [12]. Since such methods do not rely on the
knowledge on software internals, they are called black-box
approaches. Compared to other approaches, these solutions
have the advantage to monitor software without involving the
constraints in the application level. Tak et. al.’s work [12]
models application behavior by building paths of kernel events.
The collected traces in this work are treated as homogeneous
traces. In real deployment scenarios, high complexity and
diverse set of functions of enterprise applications generate a
highly dynamic set of operations in the application behavior.
The assumption on homogeneous behavior can trigger false
alarms since different types of application activities can be
considered as anomaly.

Our Contributions: We propose a new kernel event an-
alytic system, called AppDiff, to address the aforementioned
challenges in the existing approaches. It introduces several data
analytic technologies to solve the problem.

We use a new metric called system resource features which
represent the resource usage statistics of kernel events. This
information is obtained by applying resource transfer functions
to kernel events. These features provide means to observe
behavior of kernel events in various resources. By monitoring
any significant change in each resource metric, we can identify
anomalous behavior of kernel events.

The diverse sets of application behavior do occur and they
need to be differentiated. Otherwise, comparing and treating
such heterogeneous patterns as homogeneous would cause
false positives. We solve this problem by inferring the charac-
teristic of application code using the distribution of system call
vector. This information is called program behavior features
and they represent unique characteristics of application code.

Based on these new features, we apply conditional proba-
bility on the analysis of traces. It enables us to distinguish trace
data generated from different application logic and improve the
analysis by identifying outliers. The proposed approach pro-
vides an accurate and reliable anomaly detection when multiple
types of application logics exist in traces by considering their
similarities and dissimilarities.



II. APPDIFF DESIGN

Large scale software systems typically consist of one or
more software components (i.e., nodes or tiers). An example
is a three-tier system that is composed of a web server, an
application server, and a database server. We use low level
kernel events for these nodes to monitor their status and
detect anomalous status of the software systems. The kernel
events generated from this system represent their interactions
and operation units. For example, a multi-tier system receives
a web request and serves the web content generated from
multiple nodes. This request processing is one example of the
transaction of this application system. The kernel events used
in this request processing are collected into one trace based on
the causal relationship of the events and we call it a transaction
trace.

We propose a performance diagnosis tool called AppDiff
that operates with two inputs: the kernel events from a training
operation of software and the kernel events from the system
monitored for anomaly. These inputs are processed in the frace
generation component and turn into two sets of traces : a set
of transaction traces for a normal scenario (777) and another
set of traces from the same system in the deployment scenario
(Tar). On these inputs, first Anomaly Trace Localization is
applied to determine anomaly in a global scope. If any anomaly
is detected, a finer grained anomaly test, Anomaly Event
Localization, is applied.

A. Transaction Trace Generation

Kernel traces are constructed by using the causal depen-
dency of kernel events. For instance, when a service request
comes to a webserver which sends back a reply to a client,
multiple components such as an application server and a
database server in the monitored system work together to
serve the request. The overall activity of the system to serve
a request is considered as one transaction. The kernel events
corresponding to this transaction are collected and organized
into one trace file. A group of kernel events for a process
is called a transaction unit (TU). A trace file includes TUs
involved in a transaction and the causal relationship among
TUs. Kernel event monitoring software (e.g., SystemTap [11],
DTrace [9], Dprobe [10], Mevalet) does not provide the
causal relationship. Hence, such relationship is constructed by
traversing kernel events and following causal patterns such as
communications and IPCs.

There are several fields for each kernel event necessary to
apply our analysis: time stamps, process ID numbers, serial
numbers of TUs, event types (e.g., a system call and an
interrupt), and event details (e.g., IP address for a connection).

B. Anomaly Trace Localization

For each trace file, two new data features (System Resource
Features and Program Behavior Features) are generated to
improve the quality of anomaly detection.

1) System Resource Features: From raw traces, AppDiff
extracts a new perspective of trace information regarding
resource usages called System Resource Features. The resource
transfer functions are defined to convert kernel events to a
set of resource features. The examples are as following; the
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latency function measures the time spent on the transaction
unit. The idle function measures the idle time periods in the
process scheduling using the kernel events. Network activity is
measured by the number of kernel events for networking (e.g.,
TCP accept, TCP receive). The functions for other resource
events are similarly defined. Figure 1 shows the conversion
process from trace events to system resource vectors.

2) Program Behavior Features: In black-box approaches,
internal knowledge on application program is missing. To solve
this problem we provide a new perspective of trace information
that infers what application code triggers kernel events. The
insight behind our solution is that the same user code in a
similar workload is likely to trigger a similar set of system call
events. In other words, our hypothesis is that the system call
vector distribution can indicate the characteristics of similar
application code behavior. We observed that many software
systems have multiple functions which produce various trans-
action traces. This scheme is the key mechanism to allow
our anomaly detector to differentiate the kernel-level traces
caused by different code. We call this information Program
Behavior Features. Figure 2 illustrates how this information
is generated. For each transaction unit, the counts of system
calls are computed and stored in a vector.

Once the system resource features are extracted from the
two sets of training and monitored execution traces, the dis-
tribution of resource features are compared to detect anomaly.
If any significant difference in a resource feature is detected,
its index is reported and conditional data mining component



is executed to find any outliers.

C. Conditional Data Mining and Anomaly Detection

Given the list of resource features having anomalies, this
component further investigates and reduces potential false
positives. It uses program behavior features to rule out outliers,
which are the cases that the anomalous resource usages are
caused by different kind of application logics. Specifically,
first traces are clustered based on program behavior features.
Then the clusters from data set are tested whether they have
counterparts in another set in terms of behavior patterns.
For the cluster pairs having the matched behavior patterns,
anomaly detection is applied in the cluster level.

1) Trace Clustering: We used a connectivity based cluster-
ing (i.e., hierarchical clustering) with a threshold (f¢) in the
distance function. It uses the agglomerative method (bottom-
up approach). To connect clusters, single-linkage (nearest
neighbor approach) is used. We use the Euclidean distance for
the comparison of system call vectors. Each pair of traces are
compared by applying this distance function on their program
behavior features, and they are connected if their distance is
less than the threshold value.

2) Conditional Data Mining: Using low level OS kernel
events enables us to monitor application software without
knowing its details. However, the lack of details on user level
code becomes a challenge to diagnose software behavior. In
order to understand irrelevant application context and improve
this black box analysis, we use conditional probability in the
analysis of anomalies. The conditions provide refined context
to the set of events analyzed. Therefore, they enable us to
improve the detection of anomaly.

Several conditions that represent program characteristics
can be used in this analysis. Program behavior features are one
example of the condition. Let R denote the anomaly condition
derived from system resource features (e.g., latency > 5
seconds) and B denote a trace set having common program
behavior features. Then the probability used in this anomaly
detection is represented as P(R|B). This is the conditional
probability using the traces clustered based on the behavior
features that reflect the application logic triggering system call
events.

Anomaly Detection in Clusters: Anomaly is detected by
using the factors, P(Rp|x € Cry) and P(Ry|z € Cuk)s
which reflect the probability of anomalous trace conditioned
by the cluster (Cr: a cluster for a normal trace, Cjs: a
cluster for a monitored trace). They are calculated by:
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Anomaly is determined by comparing the resource features
conditioned by the clusters from a normal trace and a moni-
tored trace.

D. Anomaly Event Localization

If any anomaly is found in the comparison of a cluster pair,
a finer grained analysis in the event level is performed on the
clusters. The assumption in this analysis is that the compared
traces have a similar structure, but their differences can reflect
the root cause of the performance problem.

Given a pair of clusters, Cr i, Cps 1, the anomaly resource
indices, and policies as input, this component compares two
clusters and generates the diff of traces. For each anomaly
resource index, a representative trace is selected from each
trace cluster based on policies. One policy for selecting a trace
in the set of normal traces is to choose the trace that is closest
to the average. Another policy is to select the trace closest
to the behavior features of the monitored run. This choice is
based on the assumption that it will distinguish the patterns
unique to the problem. In the monitored execution the trace
with the highest latency could be chosen since it is likely
to represent performance anomaly symptoms. The selected
pairs of traces and TUs are compared using the Longest
Common Subsequence (LCS) algorithm commonly used in
diff utilities. The differences are examined by developers
to understand the root cause of the anomaly.

III. EVALUATION

We implemented AppDiff as the analysis framework for
the NEC proprietary kernel tracing tool, Mevalet, that supports
diverse system platforms such as Linux, HP-UX, and Microsoft
Windows. We present a case study of a three tier system, J2EE
PetStore 2.0 [13] service testbed. We configured this system
with four nodes as a three-tier system with the redundant ap-
plication servers: an Apache web-server, two Jboss application
servers, and a mysql database server. The webserver balances
the load to two application servers in a round-robin fashion.
The logs have over three million events in total.

The training run is executed without introducing problem-
atic symptoms. In the monitored run, we introduced a perfor-
mance bug to validate AppDiff’s capability that localizes the
problem. This bug is called db_misconfig bug [14] where the
administrator misconfigured the DNS in one of the application
servers; therefore the requests going to the second application
server fail to connect to the database server. Instead the error
pages are returned to the clients.

1) Trace Analysis: Clustering using Program Behavior
Features: In order to distinguish the traces from different ap-
plication logics, transaction traces are clustered using program
behavior features. Specifically the system call vector of each
trace is compared with other traces’ vectors and their distances
are calculated. In the evaluation we used several clustering
thresholds of 1%, 5%, 10%, and 20%, and the number of
the produced clusters vary depending on the threshold. For
instance, when the threshold is 20%, the traces for the training
run are grouped into 9 clusters and the traces for the monitored
run are categorized into 18 clusters.

Figure 3 and 4 show the distribution of means and vari-
ances of these clusters. The execution paths of the requests
are mainly two ways. If the requests are sent to the Jboss
server without the misconfiguration, they are returned to the
clients with a short latency. On the other hand, if requests
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Fig. 4. Means and Variances of Clusters (A zoomed view of Figure 3 in the
bottom left corner).

are sent to the misconfigured application server, they expe-
rience significant delay. These two behaviors are mixed in
the monitored data set. After clustering, the similar behavior
patterns handling the requests are grouped together; therefore,
two major request processing behavior are separated. For
example, in Figure 3 we can confirm the clusters having
significantly high means and variances of latency all belong
to monitored runs. The clusters of the training runs stay at the
left bottom corner, which is further zoomed in Figure 4. This
figure in fact shows not only the clusters from the training
run but also some clusters from the monitored run having
low latency. These clusters reflect the requests processed in
the JBoss application server without anomaly. This process
shows the clustering based on program behavior features is
effective in distinguishing normal and abnormal traces based
on application behavior patterns.

2) Anomaly Event Analysis: The performance problem
in this experiment generates a lot of traces with extended
latencies. These traces increase the means and variances of the
clusters. Therefore the anomalies are detected from multiple
clusters. We may wonder what kind of root cause led to this
problem. To find additional clues regarding this symptom,
AppDift proceeds to a finer level inspection of traces in the
event level.

With the clustering threshold 6o = 0.2, we obtained 18
cluster groups for the monitored data set and 9 cluster groups
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Fig. 5. Diff Operation on Kernel Events in Transaction Units. (Left: a TU
from the execution with DB misconfiguration, Right: a TU from the training
execution without performance anomaly).

for the training data set. The mean latency of the clusters for
the monitored run vary from 0.00221 to 125.

Conditional probability is applied to the clusters generated
by program behavior features. There are other clusters having
low latencies which are from properly handled requests by
another application server without anomaly. Without cluster-
ing, the trace selection might have been biased by normal data
patterns which have significantly low latencies compared to
the abnormal case.

For event level comparison, two traces are selected each
from the monitored run and the training run. For the monitored
run, we selected the trace with the longest latency. We ranked
all traces in the monitored run with the ascending order of
latency and choose the top trace in the list. For a normal
trace, we chose the one having the average characteristic in
latency. There are several cluster candidates. We chose the
cluster group with the most number of TUs and selected the
trace which is closest to the average of the cluster.

Diff Events: Figure 5 shows an excerpt of the result from
Anomaly Event Analysis. In the comparison, the left hand side
is the TU of the anomaly trace and the right hand side is the
TU of a normal trace. EID_SVC_BGNXXXXX events represent
the system calls with the names XXXXX. From the comparison
result, we can determine the frequent usages of clock_gettime
and gettimeofday system calls. These events are related to the
time measurement code.

This event pattern indicates that there are frequent time
out events in the abnormal trace when there is high latency.
Due to the misconfiguration in the connection to the database,
application server experiences excessive time out and delays
when it handles requests. As shown in this example, event
level analysis can help users to understand the root cause of
performance problems.

IV. CONCLUSION

We present a new black-box approach to analyze kernel
events of enterprise software systems and investigate the root
cause of performance problems. While many existing black-
box approaches handle kernel events homogeneously in their
analysis, major software systems have a variety of application
logics in their transactions. Without differentiating such under-
lying execution patterns, anomaly detection faces inaccuracy.
We propose new trace analysis techniques to extract semantic
information regarding resource usages and application logic
behind the traces by using kernel event patterns. Our result
shows improvement in performance diagnosis and anomaly
detection by pruning out outliers.
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